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FOREWORD

This final report describes technical work accomplished during the Labyrinth

Seal Analysis program conducted under Contract AF33615-80-C-2014. The work

described was performed during the period 15 June 1980 to 30 April 1985. This

contract with Allison Gas Turbine Division of General Motors Corporation was

"sponsored by the Air Force Wright Aeronautical Laboratories, Aero Propulsion

Laboratory, United States Air Force, Wright Patterson AFB, Ohio, with Mr.

SCharles W. Elrod (AF.AL/POTX) as Project Engineer. Technical coordination was

provided by 1st Lt. Keith C. Topham.

The technical effort reported in this volume was performed by Dr. Raymond E.

Chupp, Mr. Glenn F. Holle, Mr. Raymond L. Owen, Mr. Thomas E. Scott, and Mr.

Donald Tipton. The experimental efforts reported in this volume were per-

formed by Mr. Glenn F. Holle, Mr. John W. Rothrock, Jr., Mr. Steven G. Gegg,

Mr. Steven 3. Hllpisch, and Mr. Warren S. Sherman. Managerial direction was

provided b Mr. Howard G. Lueders and Mr. Peter C. Tram.

This report was submitted in four volumes in May 1985. Volume I summarizes

the Labyrinth Seal Analysis Model. Volume II presents the user's manual for

the Analysis Model computer code. Volume III contains the experimental re-

suits and summarizes the Disign Yodel based on these empirical data. Volume

IV presents the user's manual for the oessign Model computer code. K,'. 1 i6)

Publication of this report does not constitute Air Force approval of the find-

ings or conclusions presented. It is published only for the exchange and

stimulation of ideas.
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1.0 INTRODUCTION

The present trend of gas turbine design has been characterized by significant
increases in cycle pressure ratio and turbine inlet temperatures to provide

higher thermal and propulsive efficiencies. These trends accentuate the need

for improvements in sealing technology and the development of advanced design

and analysis capabilities to reduce gas path seal leakage, minimize vent leak-
age, provide better control over sophisticated cooling circuits, and prevent

high levels of seal leakage into critical aerodynamic locations in the turbine

gas path.

Labyrinth seal design and analysis methods available today rely heavily on

empiric!l relationships which severely limit the applization range. Available

analytical formulations which originated many years ago do not take advantage

"of modern flowfield calculation techniques such as offered by solution algo-

rithms for the Navier-Stokes equations. In addition, empirically derived

models do not provide the design engineer with guidance on how to improve the

seal efficiency beyond the information that has been determined experimentally.

The Labyrinth Seal Analysis program was, therefore, directed to the develop-

ment of an advanced labyrinth seal analysis computer code to provide the seal

specialist with a tool to calculate and evaluate the details of the seal in-

ternal flow field and to assess the effects of subtle geometric changes rela-

tive to improving seal efficiency.

To further enhance the predictive accuracy of labyrinth seal performance, the

program included the development of an improved empirical design model to pro-

j. .,' vide the calculation of the flow paratmeter characteristic based on salient
. geometric and aerodynamic parameters.

The Labyrinth Seal Analysis effort was structured as a three-phase program.

* Phase I was directed to the analytical development of both an *analysis* model

and an improvwd empirical *design" model. Supporting rig tests, including
flow visualization, passage velocity surveys and performance data, were con-

ducted under Phase II. The Phase III effort was devoted to improving the

'analysis* program usability.



The "analysis4 model, presented in Volume I of this report (66)*, uses numeri-

cal solutions Gf the time dependent, compressible Navier-Stokes equations to

provide the aerodynamic details of the seal interior flowfield.. Using existing

Navier-Stokes computer codes which incorporate a consistently split, linearized

block, implicit algorithm, suitable coordinate systems have been constructed

to analyze single-knife and multiple-knife straight and stepped labyrinth

seals. The continuity, momenta, and energy equations are solved with a mixing

iength turbulence model or with a two-equation turbulence model based on tur-

ib?,lence kinetic energy and dissipation rate. Typical "analysis" model geo-

metric capabilities permit variations in clearance, knife height, knife thick-

.* ness, knife sharpness, and, where appropriate, knife pitch, number of knives,

* * and knife angle. Surface roughness, rotation, heat transfer, and coolant flow

i' jecticn are also input variables. Modifications were made to the program -to

simplify input and output for user friendly operation.

The user's maniual for thE labyrinth seal analysis code is presented in Volume

II (67). The Aaalysis program has been compiled for the CDC and Cray I com-

puters.

The '-design" model development, prese'nted in this volume, is based on detailed

knife-to-knifi (KfK) flow analysis which uses empirical corrections to °• sir-

plifieO one-dimensiunal theory. The empirical corrections for seal geometric

effects are based on statistical analyres of generalized experimental perfor-

mance. The "design" model is c3pable of predicting the leakage for a wide

range of straight, stepped, and mixed otraigh. and stepped seal configurations.

*. in addition, the "design" model has the capability to optimize a seal confi3LI-

ration within specified geemetrical constraints such as clearance, axial en-

* "velope, inlet air temperature, and overall pressure ra*io. The user's manual

"for the labyrinth seal design code is presented in Volume IV (68).

Rig tests were performed on selected fuli-scale labyrinth seal configurations

to extend the data base and provide v-rification for the "design' model. A
test progiara devoted to the characterization of straight and stepped seal per-

formance with a variety of open-cell honeycomo lands was run stittiLally and

* .• *Numbers In ( ) refer to References, page 148.
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dynamically in the three-dimensional (3-0) test rig. Large-scale seal models

were tested in the Allison two-dimensional (2-D) seal test rig to obtain leak-

age performance, intraseal pressures and temperatures, velocity'distributlons,

and flow field visualization for *analytical' model verification.

This volume is devoted to the presentation of results from the literature sur-
vey, development of the empirical "design" model, and supporting experimental

data.

(3.1
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2.0 SUMMARY

The Design Model development program was started with a literature search to

identify significant geometric and aerodynamic parameters that influence leak-

age, to determine the most useful theoretical approaches to predicting laby-

I rinth seal performance, and to acquire a data base upon which to develop an

advanced empirical model.

* The knife-to-knife approach to modeling labyrinth seal performance was selected

as the most promising technique to achieve flexibility and accuracy. Using an

"empirical building block procedure, a three element loss model was formulated

for a single knife and extended to include multi-knife straight seals and

stepped seals. A statistical analysis was employed with the performance data

base to derive loss correlations for contraction, expansion, and venturi and

friction. These correlations were derived not only to produce a good data

match, but to provide physical realism to the loss process. The resulting
knife-to-knife (KTK) seal design model demonstrated an accuracy of ±5% in the

prediction of leakage flows for the data base configurations which include

- straight and stepped seals with vertical or slanted knives.

" A seal design optimization routine was developed for the KTK Design Model.'

With this capability, a minimum leakage seal configuration can be identified

"for a specific engine application, e.g., design constraints on clearance, axial

"envelope, inlet air temperature, and overall pressure ratio.

Performance data were acquired by testing specific labyrinth seals to fill
voids in the KTK model data base obtained from the literature search and

•. existing Allison data. Twenty-three tests on straight seals (12 tests) and

"stepped seals (11 tests) were conducted to extend experimental coverage on the

effects of knife angle, tip thickness, pitch, height, number of knives, and

land surface roughness. This entire data base was utilized in the development

of the Allison Design Model.

wl| 5



* Flow visualization studies were conducted to provide qualitative data upon
which to identify loss mechanisms and to verify flow phenomena calculated with
the Analysis Model (66). These tests were conducted in the 2-0 static rig us-
ing large-scale seal hardware with a schlieren flow visualization technique.
A total of nineteen tests were performed on straight seals, and six tests were
conducted on stepped seals. Valuable insights were obtained about the con-
formation of flow fields through single knife and multiple knife seals. The
flow perturbations introduced by knife edge rounding, knife slanting, knife

spacing, and clearance change were observed. Although some still pictures
were acquired, the motion on the video tapes provided the most definitive de-
scription of the internal flow characteristics. These visualization experi-
ments provided good qualitative verification of the Analysis Model and aided

in the corroboration of loss mechamisms for the Design Model development.

Five performance tests were conducted on large-scale (ten times size) straight
seals to provide quantitative comparisons of seal leakage characteristics with
the Analysis Model. Four large-scale tests (at five times full-scale) were
performed with stepped seals. These tests were done on the large-scale flow
visualization models in the 2-0 static rig. Keasurements of static pressure

and total temperature were made at selected points in the intraseal flow pass-
age. A comparison with an approximate analytical equation for labyrinth seal

pressure gradient derived by Kearton and Keh (31) showed good agreement with
the exception of the first knife which seems to provide a larger than antici-
pated pressure drop. As the overall seal pressure ratio increases, the accel-

eration to the last knife becomes more pronounced until choking occurs. The
jet from the last knife appears to behave ii. the same way as the discharge
from a convergent, annular nozzle with an extensive base recirculation region.

Detailed velocity surveys were made on the three knife straight and stepped
"seal models with the tapered large-scale knives using LDV and hot wire mea-
surement techniques. Velocity distributions measured in front )f the first
knife, in the clearance gaps. and in the cavities between knives provided good

qualitative agreement with the Analysis Model. The hot wire measurements
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produced better resolution of the velocity profiles than the LDV due to the

proportionately large spot size of the LDV beam. The LOV data appeared to be

dampened due to usmearing" of the velocity gradient through the spot. Local

distortions of the flow field were incurred at the seal land due to the access

holes for entry of the hot wire probe. A redesign incorporating a reduced

slot size provided substantial improvement in the accuracy of velocity profile

data. The integrated velocity profiles in the clearance gaps of the straight

seal and the stepped seal agreed well with the mass flowrates measured down-

stream of the rig.

Additional full-scale performance testing was conducted to extend the laby-

rinth seal data base to evaluate the effect of interknife cavity aspect ratio

(KP/KH) and the interaction with clearance. A total of eighteen tests were

made on vertical knife straight seals with interknife cavity aspect ratios

from 0.40 to 4.0 at three clearance values. The results of these tests con-

firmed the optimum performance of a square (KP - KH) interknife cavity for the

knife geometry utilized. The Design Model predicts the performance of straight

seals very well at knife tip clearances of 0.010 in. or greater when inter-

knife cavity aspect ratio is 1.0 or larger. However, significant overpredic-

tions of leakage can occur for straight seals with short or deep interknife

cavities (KP < KH) or with clearances near 0.005 in. The uncertainties asso-

ciated with full-scale model testing at small parametric dimensions are sus-

* pected as the cause of the data dispersion which is the source of the modeling

problem.

Wide-spread usage of open-cell honeycomb lands over the last ten years prompted

* an experimental effort to quantify the effects of honeycomb on seal perfor-
mance. Thirty-eight tests, using the 3-D dynamic rig, were conducted on a

* five knife straight seal (30 tests) and on a four knife stepped seal (B tests)

with three honeycomb cell sizes. The effect of knife slant angle was investi-

gated statically and dynamically to 785 ft/sec knife tip speed. The data sup-

ported earlier indications (54) that open-cell honeycomb lands could be bene-

ficial or detrimental to the performance of multiple knife straight seals. As

* ,expected, the smaller honeycomb cell size tends to more closely follow solid

7
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land performance characteristics, but the leakage is strongly affected by the

ratio of cell size to clearance. In general, honeycomb cell sizes of 0.031 in.

and larger are detrimental to straight seal performance at clearances less

than 0.010 in. A reduction in leakage as compared with a solid-smooth land

was noted for honeycomb cell size to 0.125 in. at a clearance of 0.020 in. A

significant rise in the temperature of the air leaking through the seals with

honeycomb lands is associated with the increased pumping work required to

swirl the flow past the honeycomb.
I,

Eight tests were performed to evaluate the effect of honeycomb on stepped seal

performance. In all cases, the application of honeycomb resulted in a large

increase in leakage relative to the solid-smooth land.

During this Labyrinth Seal Analysis program an extensive bibliography and a

large performance data base have been compiled. The KTK Design Model was de-
rived from this data base. The evaluation tests vindicated the selection of

three element loss correlations for the KTK flow analysis. The Design Model

provides an improved performance prediction capability applicable to a wide

M range of seal geometric and aerodynamic parameters. The use of an optimiza-

tion algorithm with the KTK performance model enables the selection of the

seal configuration which will leak the least for an arbitrary set of design

constraints.

A.
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3.0 LITERATURE SURVEY

4 A literature survey was conducted to identify the most successful theoretical

approaches to modeling labyrinth seal performance and to obtain *outside' ex-
perimental data on conventional labyrinth seals. Citations of books, reports,

technical papers, and articles relating to labyrinth seal technology were found

through automated literature searches and reviews of NTIS Government Report

Announcements. A detailed discussion of the literature search can be found in

4m'
the inei reot6)

3.1 ANALYTICAL MODELS

The reference evaluations (64) revealed certain general areas of agreement

among past and present researchers as well as some points of disagreement or

departure.

The leakage through a labyrinth seal is invariably modeled as an adiabatic

throttling process. Gas phase and vapor phase working fluids have been de-

scribed with the thermally perfect equation of state and calorically perfect

thermodynamic assumptions with apparently good results. The neglect of real

gas and heat transfer effects evidently is of secondary importance to most

labyrinth seal applications. The thermodynamic model for the series-of-

* throttles process ideally predicted for labyrinth seal leakage is illustrated

as shown in Figure 1.

The ideal throttling model has led to two schools of analytical representation

for labyrinth seal performance calculations. The most widely employed assump-

tion treats the labyrinth seal as a series of discrete restrictions with asso-

ciated local pressure losses. However, another model characterizes the laby-

rinth seal as a rough pipe with uniformly distributed wall friction. The gen-
eral opinion of most researchers seems to support the series-of-restrictions

model as having a more physically realistic formulation with the attendant

ability to develop the pressure loss components on a rational geometric and

parametric basis. The rough pipe model seems to rely more heavily on purely

6~ 9
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Figure 1. The-modynamic processes for labyrinth seal leakage.
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empirical correlations to predict the equivalent wall friction. However, very

little difference in model accuracy, current or potential, could be found.

"Several survey papers on labyrinth seals were utilized to assist the literature

search. Those discussions cited in Ref 3, 5, 8, 19, 39, 51, and 57 elaborate

on the series-of-restrictions models and the rough pipe models.

3.1.1 Rough Pipe Global Model

The rough pipe model assumes that the leakage through a labyrinth seal is

*i analogous to the compressible flow through a duct with uniformly distributed

Sroughness. Under these assumptions the resulting labyrinth seal model becomes

"global in the sense that no mechanistic analysis of the internal flow is re-

quired. The early Fanno line analysis concepts of Becker (6) were extended by

Trutnovsky (57) where the pressure drop characteristics of the seal were re-

lated to an equivalent wall roughness, 4f, of the basic seal channel which is

characterized by t/H. This concept was simplified and elaborated on by

Zabriskie and Sternlicht (61) who correlated the equivalent wall roughness

parameter with certain seal geometry characteristics and a Reynolds number

parameter. The mathematical formulation and data correlation of the labyrinth
seal performance based on equivalent roughness friction factor can evidently

be carried out with accuracies equivalent to those achieved with the series-of-

restrictions models. However, the lack of physical relevance of the roughness

friction factor limits the use by the designer.

i •3.1.2 Series-of-Restrictions .lobal MoIel

, " The series-of-restrictions model assumes that leakage through a labyrinth seal
is governed by the local character of the sequential accelerations and decel-

erations experienced as the fluid passes through the clearance gaps at the

knives. The earliest analyses based on this model postulated the total annihi-

.lation of the dynamic nressure after each knife, i.e., complete thermodynamic

reheat, to derive a global equation of the form.

""a. 11
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1 -r

KN - a in r

The value of a results from the local thermodynamic restrictions imposed upon
"the model derivation. For seal leakage limited to the incompressible flow
regime, a = 0 (10 and 55). When the flow regime is considered compressible,

l the a = 1 for local isothermal processes (17 and 41) and a = 2/y for local
isentropic processes (18).

The theoretical derivation of the global equation is postulated on equal effec-
tive areas for each clearance gap. This assumption is approximately true for
axial, straight, or staggered seals with constant clearance. Then the primary

deviation is attributable to compressibility effects, C u f (Pn/Pn+l). For
On

stepped seals and, more dramatically, for radially oriented seals of any type,
the constant effective area assumption leads to erroneous leakage predictions.
However, these geometrical contributions to area variation can be accounted

for analytically (42) with some additional formulation complication proposed
by Gercke (21).

* The global model assumption that contributes the greatest deviation from the
real physics of straight-seal leakage is the assumption of no velocity carry-
over, r a 1.0. The residual velocity in jets encountering downstream knives
can significantly increase the leakage through straight seals (18). A variety
of analytical correction factors (26, 58, and 60) and empirical correction

factors (18 and 25) have been proposed to account for this global model defi-

ciency.

• 3.1.3 Knife-to-knife Nodel

All global models (both series-of-restrictions and rough pipe approaches) en-
counter difficulties with supercritical seal operation (45). A supplementary

Z and necessarily approximate model for the choking pressure ratio is required
* (31. 40, and 55). Also, the global models do not treat the variation of knife

discharge coefficient and velocity carry-over realistically with respect to the

*. 12d



* pressure ratios through the seal (43). The accurate treatment of clearance

area changes and other aionconstant geometrical parameters is difficult at best

(32) and is frequently impossible. The routine use of large, high-speed digi-

tal computers for engineering design makes the basic knife-to-knife analysis

of individual labyrinth seal designs feasible from the standpoint of time and

effort and desirable for flexibility, comprehensiveness, and accuracy. In the

knife-to-knife approach, the one-dimensional flow parameters in the knife

throats are computed and linked together by a total pressure loss calculation.
.4

Usually, a flow coefficient is utilized *o account for the vena contracta in

the knife throat. Each knife may have an individual flow coefficient value,

or groups of knives may have one value and the last knife another. Carryover

, of the velocity head in a straight seal is considered by taking only a partial

velocity head loss in total pressure between knives. Komotori (37) utilized

an expansion angle to determine the fraction of velocity head lost.

Callendar (10) performed an early knife-to-knife analysis using the isentropic
* kSt. Venant-Wantzel flow equation with adiabatic throttling process constraints

to evaluate the accuracy of the global equations of Stodola and Martin. Egli

(18) later utilized the same technique to extend his flow curves to include

small numbers of knives (effectively 1 < KN < 4). Recent researchers have ex-

tended and refined the knife-to-knife model until it is unquestionably the

most versatile and precise labyrinth seal design model.

SSince Koenig and owley (34) demonstrated the versatility of the knife-to-knife

model using the compressible flow equation of St. Venant and Wantzel with the

seal performance data of Egli (18) coded for digital computer, a series of

similar but increasingly complicated knife-to-knife models have been proposed.

* tThe knife-to-knife %eal models of Komotori and Morl (36) are by far the most

sophisticated and versatile proposed to date. The models are broadly based on

Sthe adiabatic character of the fluid flow through a series of throttles. How-

..... ever. the applicability to seal leakage involvinq heat transfer has been demon-

strated experimentally. These data indicated a very weak effect of heat trans-

fer on leakage wagnitude. The flow through each knife gap is calculated with

13



the St. Venant-Wantzel equation for isentropic flow corrected bj an empirical

discharge coefficient. Downstream expansion losses are assumed complete for

staggered and steppel seats. However, the velocity carry-over effects for

straight seals are modeled as a sudden expansior pressure loss from Borda's

equation. The expansion ratio is 4btained from a constant jet expansion angle

which was derived from test data and the geometrical characteristics of the

seal knife pitch and clearance. This straight seal model was empirically ex-

tended by Komotori and Miyake (37) to account for the effects of knife rota-

tion on leakage.

A similar knife-to-knife approach was derived by Hawas and Muneer (24). A cor-

rection was added to the single knife discharge coefficient for the influence

of downstream knives. Also, an empirical correction for velocity carry-over.

in straight seals was substituted for the theoretical Borda equation.

The results of the evaluation of the surveyed labyrinth seal performance models

which have been projsed in the literature indicate that the global models are

no longer suffi.'iently versatile or accurate for the analysis, design, and

optimization o. modern labyrinth seals. The knife-to-knife models with physi-

cally appropriate empirical corrections appear to offer the greatest potential

for the accurate calculation of seal performance.

3.2 AERODYNAMIC PARAMETERS

The aerodynamic parameters which specifyi labyrinth seal performance on a dimen-

sionlo, eeneralized basis are given in Table 1. The labyrinth seal perfor-

manc:e is conventionally expressed in terms of the dimensionless mass flowrate

parameter as a function of overall seal pressure ratio. Frequently, the mass

flowrate parameter is expressed dimensionally, but with almost as much gener-

ality, as 0 = w u/PuAt (lbm ORl/ 2 /lbf sec), and the reciprocal

of the pressure ratio, r, is used to obtain a finite range of that parameter,

0 to 1.0. Perry (46) demonstrated the facility of elliptical coordinates.
2 2

0 versus (1-r ), in linearizing orifice flow data. Inspection of

Stodola's global formula for labyrinth seal leakage supports the efficacy of

elliptical coordinates for the presentation of labyrinth seal performance.



Table 1.

Aerodynamic parameters for labyrinth seals.*

Parameter Symbol Function Effect

M.ass Flowrate € w-=RT/-ý PUAt Dependent variable

Pressure Ratio PR PU / PO Strong

Axial Reynolds Re (w/At) 2CL/pu Moderate
Number

Ki~tfe tip speed Vcorr V/q gcRTU Moderate

Rotational ReN PU w2/puR TU Weak
Reynolds Number

Taylor Number Ta (PUV CL/IuRTu)-(7-'7rL Weak

*See seal nomenclature and list of symbols.

The axial Reynolds number influences the discharge coefficients for the sea:

knives, but its effect on overall seal performance has not been established

experimentally. The axial Reynolds number, which is constant for a specific
seal operating at a given pressure ratio with the exception of very slight

temperature and pressure effects on viscosity, has been found by Wittig, Oorr,

and Kim (63) to affect the performance of similar seals of different sizes.

Rotor angular velocity affects seal performance at high knife tip speeds. but

the characteristic is strongly perturbed by seal geometry and land surface

conditions in a presently undetermined manner (37). Similarly the effect of

rotational Reynolds numbe- is unknown but may be involved with the knife tip
speed effects observed. Taylor number has no significant effect on the leak-

age past cylinders rotating relative to one another, although it has a strong

effect on heat transfer. However, its influence on the labyrinth seal leakage

"has not been investigated. Intuitively, the effect of Taylor number, which is

the product of a Reynolds number and CL/rK. would seem to be insignificant

based on the excellent agreement between 2-0 rig and 3-D rig test results.

* Since curvature (CL/rK) appears to have little if any effect on the perfor-
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mance, all of the influence could be ascribed to rotational Reynolds number

alone. The present dearth of reliable test data and the divergent opinions of

many researchers on the importance of rotational effects would make modeling

of the knife tip speed, rotational Reynolds number, and Taylor number effects

highly speculative and unreliable.

3.3 GEOMETRIC PARAMETERS

The seal geometry parameters which specify labyrinth seal performance can be

expressed in terms of geometrical similarity criteria compatible with the gen-

eralized aerodynamic performance parameters (8). The strongest geometrical

variable affecting seal leakage is the clearance between the knife tip and the

land surface (CL), which defines the throttling area (At). Therefore, the
seal clearance is the best basis for establishing geometrical similarity in

labyrinth seal design. A list of the geometric parameters for conventional

straight and stepped labyrinth seals is given in Table 2. The classification

by influence of the geometric parameters in Table 2 is based on the empirical

evidence accumulated from the test results and opinions of many researchers

reviewed during the literature survey.

The strong effect of the number of knives was recognized in the earliest anhly-

ses of labyrinth seal performance. Knife angle influence was not considered

until later, after the separate effects of stream contraction due to orifice

geometry and stream velocity distribution due to Reynolds number were observed.

The importance of relative knife tip thickness on the discharge coefficient

was determined by Egli (18). Trutnovsky (57) reported on the investigation by

Troyanovski of the influence of knife blade shape and knife tip sharpness.

The effect of leading-edge rounding on discharge coefficient was quantified.

Jackson (28) showed that the back face geometry of the knife could affect

carry-over. Relative knife pitch, KP/CL, was used by Jones (30) to correlate

the performance of straight seals in the practical range of relative knife tip

thickni,. KT/CL. Stocker (54) showed that some optimization of KP/CL was

possible in stepped seals. Abramovich (1) contends that relative knife height

.16
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Table 2.
Geometric parameters for labyrinth seals.*

Parameter S Functional Influence
Straight Stepped

Number of knives KN Number of throttles Strong Strong

Knife angle Ke Orifice geometry Moderate Moderate

Knife tip thickness Relative throat length Moderate Moderate
CL

rt
Knife tip sharpness - knife relative sharpness Moderate Moderate

CL

Knife blade shape parallelogram Orifice geometry Weak to Weak
tapered, etc Moderate

Knife pitch CL Relative throttle spacing Moderate Weak

Knife height K- Relative chamber depth Weak WeakLL

-' CLand surface 2CL Land relative roughness Moderate Weak
roughness

Land surface Pb Land relative porosity Moderate Weak to
porosity Moderate

',' SH
Step height CL Relative step height Weak

Distance to contact CL Rotor relative axial Weak toCL location Moderate

Flow direction STLD Flow down the stator step Weak
LTSD Flow up the stator step

*See nomenclature and list of symbols.
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has a weak influence on straight seal performance until the labyrinth cavity

becomes so shallow that the through-flow jet expansion fills the cross-section.

Then the sudden compression of the stream which occurs at the downstream knife

is controlled by the relative knife height geometry. Testing by Stocker (54)

indicated a weak effect of relative knife height on stepped seals, also.

Stocker (54) also initiated some investigation of the effects of land surface
roughness and porosity on seal performance. Surface roughness was shown to

have a limited range of benefit, but porosity always has a detrimental effect

on seal leakage. Most investigators have accepted the hypothesis that the

tortuosity of the step geometry results in nearly complete destruction of the

carry-over velocity. However, experiments by Stocker (54) have demonstrated a
*. weak but surprising optimization for relative step height. Distance to contact

and flow direction were also shown to have a usually small but measurable ef-

fect on seal performance by Stocker (53) and Cox (14).

3.4 LABYRINTH SEAL PERFORMANCE DATA BASE

The data base of labyrinth seal performance was established by a careful

screening process. All applicable sources of experimental seal data identi-

fled in the literature survey were examined to see if the tests yielded accu-

* rate results and if all pertinent geometric and aerodynamic parameters were

reported. In some cases, authors were contacted to obtain additional informa-

tion. Data deemed satisfactory were digitized electronically, converted to

flow factor versus pressure ratio and plotted. These plots were reviewed to

eliminate apparent bad data by identifying specific points or curves in obvious

disagreement with the majority of the data.

Data which passed the screening process were placed in a computer data file.
The file contained the performance test data points (. versus pressure ratio)

and corresponding seal geometric parameter values. This file then became the

data base for the Allison Design Model discussed in Section 4.0.
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Table 3 summarizes the sources, seal types, and quantities of performance data

in the data base. A configuration represents a set of test data points for a
given seal geometry. Data were included for 175 different single-knife seal,

straight seal, and stepped seal configurations. The number of data points per

, _configuration varied from 1 to 54 yielding a total of 1839 test points in the

* data base. Table 4 lists the ranges of the geometric parameters covered in

the data base.

Tables 3 and 4 show that the data base used to build the Design Model is ex-

tensive and covers a wide range of parameter values. The data come from a
diversity of sources with 40% of the configurations tested at Allison under

, various contracts including this AFAPL contract.

3.5 DESIGN MODEL CANDIDATES

The literature survey yielded several potentially useful performance prediction
models for labyrinth seals as summarized in Table 5. Six models were coded for

computer solution. Five models were global types: Egli, Allison Design Manual

,., (similar to Egli), Jones, Martin and Stodola. One model was chosen to repre-

sent the knife-to-knife analyses, i.e., Hawas and Muneer. The global model

type refers to the approach of treating an entire seal, rather than the se-

* quence of individual internal component geometries, as a means of estimating

leakage. A comparison of the predictions from the models with test data for a

typical seal configuration in the data base is given in Figure 2. The model
predictions deviate from the test data by as much as -17% to +38%, indicating

the wide range of results which can be calculated from models available in the
"literature. Additional comparisons of the three global models based on per-

formance maps, i.e., Egli, Jones, and the Allison Design Manual, have been made

,. with test data for 38 of the straight seal configurations in the data base.

The performance map model type uses input plots of flow function versus geo-

metric variables to obtain leakage rates. Deviations were found to range from

-22% to +76%, again demonstrating the inadequacy of available models to accu-
rately predict seal performance for a variety of geometric designs.

o1
b~i• 19

7-4.



4

Table 3.
Labyrinth seal Design Model data base.

Number of seal configurations
Single knife Straight Stepped Total

Kearton and Keh (31) 3 0 0 3
Caunce and Everitt (13) 6 4 46 56
Meyer and Lowrie (43) 10 0 G 10
Komotori and Miyake (37) 1 12 0 13
Harrison (23) 0 13 10 23
Allison (14), (53), (54)

(IR&D), and (AFAPL 8 29 33 70
contract)

Total No. Configurations 28 58 89 175

"Total No. Test Points 373 779 687 1839

Table 4.
Parameter ranges in the labyrinth seal Design Model data base.

Seal type
Single Straight Stepped seal

Parameter knife seal STLD dir. LTSO dir.

KN min 1 2 2 2
max 1 12 6 6

KT/CL min 0.21 0.21 0.50
max 3.3 4.4 2.64 1.50

Ke min 30 60 50 50
max 90 90 90 90

KH/CL min - 2.7 5.1 5.1
max - 31.3 29.4 28.0

KP/CL min - 4.0 6.4 9.2
max - 56.3 53 40

* c/(2CL) min 0 0 0 0
max 0 0.030 0 0.030

SH/CL min - 2.0 4.0
max - 29.4 12.5

DTC/CL min - 0.85 4.1
max - 40 19.4

(KP-KT)/CL min 3.5 6.2 8.9
max 55.0 51.8 38.5
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Table 5.
Design model types reported in the literature.

Modeling
Approach Global (Control Volume) Knife-to-Knife

Analysis Friction
Method Formula Factor Performance Maps Fluid Mechanical

Authors Martin Becker Egli Morrow
Stodola Trutnovsky Jones Robinson
"Dollin & Zabriskie & Myer & Lowrie Idel'chik

Brown Sternlicht Heffner Abramovitch
Gercke Allison Koenig & Bowley
Bartosh Design Manual Komotori
Scheel Hawas & Muneer

*.Vermes Benvenuti, et.al.

Applicability Simple Difficult Moderately Complex.
to complex difficult Good fluid me-

chanical concept
* of losses.

Solution Manual Manual Manual Computer
* computation or or computation
* computer computer

"computation computation

"Disadvantages Difficult to Requires ex- Requires exten- Requires exten-
apply carry- tensive sive overall sive models of
over correc- friction correlations for knife throat &
tions & factor or flow coefficient cavity fluid

Sknife-to- flow coeffi- & carry-over dynamics.
- - knife flow cient data. factor.

coefficient Lacks physi-
variations. cal signi-

ficance.

".4 21
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One approach to developing a design model is simply to correct the candidate

model(s) with a multiplying factor. The factor in general would be a function

of the geometric parameters. This approach was pursued by calculating the

multiplying factor from the model-test data deviations, i.e., ratio of test

flow factor to calculated value, and correlating the result as a function of

the geometric parameters. A linear regression analysis for several models for

both straight and stepped seals was used to obtain the correlation. The re-

sults showed that the modified models could predict the seal performance within

"t7% mean deviation.

Using an overall correction factor approach on any existing model is simple to

implement and would give reasonably accurate results for the data ranges con-

sidered. However, such models would not lend themselves to extrapolation be-

cause the terms in the correlations would, in general, not be physically rele-

vant.

SBased on the review of various candidate model approaches for considering the

flow in labyrinth seals, a knife-to-knife (KTK) analysis was selected as a

starting point for the Design Model in this program. The KTK approach

provides:

o the most physically realistic formulation of the knife throat and cavity
fluid dynamics in terms of geometric parameters,

* o interknife pressure information,

So a versatile tool with growth potential to include additional parameters

_ i I and/or extended parameter ranges.

52
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4.0 LABYRINTH SEAL DESIGN ANALYSIS

The labyrinth seal Design Model developed by Allison is based on the knife-to-

knife (KTK) flow analysis approach. The losses at each knife have been sep-

arated into the following three dynamical mechanisms as shown in Figure 3:

o contraction--stations 1 to 2 and 4 to 5,

o venturi and wall friction--stations 2 to 3 and 5 to 6,

o full or partial expansion--stations 3 to 4 and 6 to 7.

The three loss coefficients can be related to the geometric and aerodynamic

seal parameters in a physically realistic way. Consequently, the chosen

knife-to-knife model is potentially more flexible and accurate than a global

.(control volume) model which uses overall flow coefficients or a KTK model

that employs a single discharge coefficient for each knife.

4.1 MODEL FORMULATION

The design model is based on:

o a one-dimensional representation of a locally adiabatic flow which may be

piecewise diabatic,

o the calculation of three individual loss coefficients at each knife from

flow and geometric conditions,

o the modification of the loss coefficient values due to the position of the

knife in the seal (presence of adjacent knives),

o a sequential solution for the pressure distribution in the seal from the

dynamics of the flow through the series of knife throttles.

Table 6 presents the parameters which were selected for incorporation into the

Design Model. The parameter selection was based on the results of the litera-

ture survey and previous Allison experience. These parameters, which govern

labyrinth seal performance, are illustrated in Figure 4. The more complex

seal geometries are defined in the nomenclature of labyrinth seal geometry.

25.
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Table 6.

Parameters in the Design Model

Geometric parameters for straight and stepped seals

o Knife height (KH)
o Knife pitch (KP)
o Number of knives (KN)
o Knife angle (Ke)
o Knife tip thickness (KT)
o Knife taper angle (KO)
o Knife tip leading edge radius (KR)
o Clearance (CL)
o Surface roughness ( t )

Additional parameters considered for stepped seals

o Step height (SH)
o Distance to contact (OTC)
o Flow direction (LTSO or STLD)

Flow parameters

o Overall pressure ratio (PuIPD)
o Inlet stagnation pressure (Pu)
o Fluid temperature distribution (Tz)
o Flow rate (w)

* , All local flowstation conditions were assumed to be adiabatic so that the coam-
." pressible flowrate could be Calculated from the Saint Venant-Wantzel equation.

t Ft
?2g• P Y 41 '

* VR(.y l k -)

Using the isentropic relationship between total and static pressure.

.4.2
Ps2



01

the mass flowrate parameter can be expressed in terms of the local Mach number,

R= RY l

(1+ y 2 2(y-l)

2 2

The dynamic loss in total pressure between any two stations can be expressed

by using the appropriate equation in the three element loss model,

-AP = K - P M2  contraction loss 4.4t c 2 s

-P Kf P M venturi and friction loss 4.5t vf 2 s

P t= Ke (P - PS-) expansion loss 4.6

The loss coefficients are based on tho isentropic flow conditions in the

smaller of the channel areas at the seal station. Equations 4.3 through 4.6

define the -low characteristic through the seal as a function of seal pressure
ratio. An iterative solution is employed that assumes the mass flowrate until

the specified seal pressure ratio is matched. The contraction loss, venturi
and friction loss, and expansion loss are computed in the sequence of flow for
each knife in series. Corrections are applied to the baseline single-knife

loss coefficients to adjust for the effects of adjacent knives.

A building block approach was used to derive the loss coefficient correlations.

Starting with the single-knife performance, the loss coefficients were corre-

lated against the independent seal parameters with a multiple regression

analysis. Physically relevant candidate equations were chosen on the basis of
limit analysis. The applicability of tne candidate equations was examined tb'
comparing their predictive capability against the labyrinth seal performance

data base. The equations which produced the best overall data match were

selected to model each of the three bzsellne loss coefficientt. Then these

single-knife seal performance correlations were extended to include multiple

knives in straight seal and stepped seal configurations by applying a similar

regression analysis and data matching procedure.
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4.2 SINGLE-KNIFE SEAL MODEL

The correlation of single-knife data affords the advantage of basic loss

phenomena evaluation without the complicating influence of adjacent knives.

The available single-knife data were analyzed for the purpose of characterizing

the contraction loss (Kc) and venturi loss with wall friction (Kvf).

The expansion losses (Ke) incurred for the single-knife seals were nearly

equal to the entire difference between the total and static pressures at the

throttle discharge due to the very large downstream channel areas relative to

the clearance gap areas. Therefore, the expansion loss coefficient was speci-

fied as unity, K = 1.0.i". e

Due to the large area variation between the inlet channel and the clearance

-. gap, the flow into the knife throat is analogous to that into a sharp-edged

"orifice. Here the radius on the leading edge of the knife is the primary

* parameter affecting the contraction loss. Using the single-knife data of
Kearton and Keh (31) in which the knife exhibited a very sharp leading edge, a

* K value of 0.7 was found when the venturi loss was assumed to be independent
c

of the leading edge radius.

With the contraction loss established, the characteristic of the venturi loss

,,' can be determined as a function of relative knife tip thickness (KT/CL) and
land wall roughness (1/2CL). The single-knife seals had aerodynamically

smooth lands so that the relationship between knife tip thickness and venturi

loss could be found directly, Figure 5. The correlation of Kvf with flow

parameter is equivalent to expressing Kvf as a function of the Mach number

over the knife. A relatively sharp knife (small KT/CL) has a strong influence

,. on the pressure drop at low Mach numbers, but becomes less effective as the

pressure ratio increases.
S.

Additional sources of single-knife seal data were utilized to establish the
effect of the knife leading edge sharpness on single-knife performance. The

linear regression analysis of these data resulted in the functional relation-

ship for contraction loss coefficient (Kc) shown in Figure 6. The data

sources are cited in Figure 6.

30
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Figure S. Venturi-frictionl coofficent from Koarton and Koh data.
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K e = 1.0

Klvf - f(*,KT/CL)

Figure 5: 0.77 < KT/CL < 3.3, but good for 0.0 < KT/CL < 3.3

[Derived from Kearton and Keh data for Kc = 0.70 (KR very

small)]

K .7E' C4 2/fCLNO0.25 KR

C = 0.fj. - EXP C1. C2 ,2(-) + C3 (-L

where KR - in. from Data Source

0.0 KEARTON & KEH (31)

0.00167 Allison

0.005 KOMOTORI & MIYAKE (37)

0.005 HARRISON (23)

0.010 CAUNCE & EVERITT (13)

K = Kc 9 00 for KG 900

Kc = Kc @ 900 x (1. - C4 (Ke - 900)] for Ke >900

[from IDEL'CHIK (27)]

Kc = Kc @ 900 + C5 (1. - SIN (KG)] for 300 < Ke < 900

(from Allison plus MEYER AND LOWRIE data (43)]

NOTE: Ke is actual front surface angle relative to the flow direction so that

Ke = 90 + KB/2 when the specified knife angle is vertical or beyond,

Ke >900.

C= constant, the value of which is given in the User's Manual

program listing for the Design Model (68).

Figure 6. Loss coefficient correlations for a single-knife seal.
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Contraction losses are affected by the slant angle (Ke) of the knife. The

effectiveness of a knife increases, i.e., the K becomes larger, as the
C

knife is slanted into the flow (Ke < 90o). Likewise the knife leakage in-

creases, i.e., the Kc becomes smaller, as the knife is slanted backward with

"the flow (Ke > 900). The contraction loss coefficient for reentrant knives

in the range 300 < Ke < 900 was correlated from the test data of Meyer and

Lowrie (43) and Allison. The effect of backward slanted knives was obtained
from a correlation by Idel'chick (27). The modifications to the K correla-

C
tion for vertical knives which correct for a knife taper angle (KO) are noted

in Figure 6.

The physical relevance of the correlation equations can be evaluated best by

comparing the predicted performance of single-knife seals with their measured

performance. An example of the good agreement obtained is shown in Figure 7.

The single-knife seal performance algorithm was the basis for the model devel-

. opment for multiknife straight and stepped seals.

.I 4.3 STRAIGHT SEAL MODEL

The single-knife seal model was extended to multiknife seals by linking the

triplet losses for each knife in the series. The overall pressure loss is the
summation of the individual total pressure losses at each knife. The losses

are calculated sequentially starting with the known inlet pressure because the

loss coefficients and Mach number are functions of the local parameter 0.
For a straight seal, there is a carry-over of the velocity head from an up-

stream knife. This carry-over through the interknife cavity affects the Kvf
and K of the upstream knife and the K and K of the downstream knife.

e c v
Thus, all the loss coefficients of a multiknife straight seal are influenced

by the adjacent knives except the Kc of the first knife and the Ke of the
last knife. The modeling approach followed for multiknife seals was to deter-

mine the three loss coefficients for a given knife location from the single

knife correlations of Figure 11 and then to correct them for the effects of

adjacent knives. The corrections are based on the expansion angle of the

carry-over jet discharging from the clearance gap over a knife. This approach

*• 33
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Straight Seal-Smooth LandCL= .020, KN= I, KH= .110, K8 =90

.36

.32

. .28 /
""'

.24-

* .20

u..16 /-0

N a I

tA /.0

4 /'

0 . o. -1

1 .12

•'04 0

" ,,'Ig .08,

""!0 .2 .4 .6 .8 1.0

2
I-(PD/PU)

4Figure 7. Model results compared to Allison data for a single-knife seal.
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l has been proposed by Abramovich (1) and utilized by Komotori and Miyake (37)

in their KTK model. The carry-over expansion angle, a, is defined by the
* m) straight seal schematic in Figure 4. The flow in the jet expands until it im-

pinges on the upstream face of the next knife. The maximum downstream flow

height is (CL + 6) so that the expansion area ratio is (CL + 6)/CL. The

upper limit of the expansion area ratio, 1 + KH/CL, is encountered with short

knives, with large knife pitch, and after the last knife in the seal. This
Sjet expansion ratio not only represents the amount the flow expands from the

upstream knife but also the contraction into the downstream knife gap. The

equations for 6 in terms of = and the other geometric parameters in Figure

4 are:

for vertical knives (Ke = 900)

6 = (KP-KT)/[Tan KO + (1/Tan )].7

for slanted knives (a < Ke < 900)
6 = (KP-KT)/(Cot = - Cot Ke) 4.8

To incorporate the effects of a on the three loss coefficients, relation-

ships proposed by Dodge (16) were utilized as follows from Figure 3:

SUDDEN CONTRACTION

SKc K= 1 -4.9
V Kc

VENTURI WITH FRICTION

K t At 4.1vf vfA 2

I,. SUDDEN EXPANSION[2
Ke =Ke-[ 4.11

'2]

I3,

4 43



The ratios At/AI and At/A 2 are simply the ratio CL/(CL + 6) relative

to the upstream and downstream sides of a given knife, respectively.

In general, the expansion angle will vary from knife toknife as the pressure

ratio varies. This was observed in the flow visualization test results. The

expansion angle variation was not modeled, however, because of the lack of

complete seal performance with interknife pressure data. The Design Model

could be developed to include a variation through the seal based on results

from Analysis Model calculations and/or test data.

Equations 4.7 through 4.11 were formulated in the Design Model with a as an

independent variable. Straight seal performance for geometries in the data

base was calculated for a range of a values. Comparing model results with

the test performance data yielded the average a for each seal configuration.

Figure 8 shows a typical comparison of test data with the model results for

assumed values of a. From this plot, an average a value of 3 deg was

detemined for the tested straight seal configuration. Table 7 summarizes the

range of * values obtained from the various data sources. The M range ob-

tained for the data of Komotori and Miyake (37) compares well with the value

of 6 deg reported in a discussion of their paper.

A linear regression analysis was performed on the Q results. The Jet expan-

sion modeling equation obtained is given in Figure 9.

Table 7.

Jet expansion angle (a) for straight seals as determined by correlation.

o Caunce and Everett, 6 knife = 6 - 8 deg
o Komotori 2, 4, 8, and 10 knife = 4 - 6 deg
o Allison 4 knife = 2 - 4 deg
o Allison 8 knife = 4 - 5 deg
o Allison 4, S knife slanted = 2 - 4 deg
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FOUR SLANT KNIFE STRAIGHT SEAL - SMOOTH LAND
CL - .010, KN = 4, KP = .110, K6 600, DIR 81

- LEGEND -

ALPHA
-- A TEST DATA -

S~0 -.32 2

.24 -

br 2

•, 4

,• . ..1 6

1010

.28 .,, ~o40 deg

- .244

08 (No cary-oer

.04

U,

S 20 .2 . 6 .8 2.

-•" .16 -,/ ._ ' ,, . 6

2

o g/, /
s/ /' . 1

08I -( /~

"•" / , .- (No carry-over)

0•-0 .2 .4 .6 .8 1.0

Figure 8. Determination of ot for straight seals.
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JET EXPANSION ANGLE

K

for

0.54 < (KP-KT) < 4.0
KH

Average deviation 25%

C6 = constant. The value of this constant is given in the User's
Manual program listing for the Design Model (68).

WALL ROUGHNESS

Kvf -K vf smooth (Correction for upstream and downstream knives) + Kf rough

S~where

Kw f rough " f (c/H, Re, KP)

At At smooth CL

- m

Figure 9. Straight seal correlations in the Design Model.
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The effect of land roughness was included in the model by adding a frictional

head loss term (K f rough) to the venturi loss coefficient (Kvf smooth ) A

wall friction loss coefficient (Kf smooth) for a smooth land is the baseline

* for' K vf. The flow area in each knife throat was increased to account for

the increase in clearance due to the land roughness. An explicit equation for

the Fanning friction factor was obtained from regression analysis:

.1

'-6

6.02 - 138.41 (c-30) 10 -6

4f H 4.12

0.82 log1 0 [10/Re + .2 ( - 30) 10
f H

where 4f >•0.

This equation is similar in form to the implicit equation for transition flow

in rough conduits that was proposed by C.F. Colebrook. The frictional head

loss coefficient was determined as

Kf rough 0 (4f rough - 0fsmooth) L/H 4.13

where H = 2 CL

The knife-to-knife flow analysis was maintained by utilizing a rough wall

length equal to the knife pitch of the downstream knife. Consequently, the

rough wall length for the last knife is equal to the knife tip thickness.

Figure 9 outlines the modeling for wall roughness. Figure 10 shows a compari-

son of model results to test data for a rough straight seal land and a corre-

spending smooth land. The model accurately accounts for the effect of rough-

ness for the seal geometry evaluated.

Comparisons of Design Model predictions with the straight seal test data show

2 that, based on overall average, the model is accurate within + 5%. Figure 11I,
is a typical example of these comparisons.

Table 8 summarizes the model deviation from the test data for the single-knife

and multiknife straight seals in the data base.

93 i 39



Table 8.

Design Model error results for straight seals.

Number of Avg. Error*

Type Source Configurations

Single Kearton & Keh 3 1.4

knife Caunce & Everitt 6 1.2

Komotori & Miyake 1 1.8

Allison

(including slanted knives) 8 3.5

Multiple Caunce & Everitt 4 3.5
knife Komotori & Miyake 12 4.3

Harrison 13 5.9

Allison

(including slanted knives

and roughened lands) 26 4.6

* All 73 4.2

*Average error is the arithmetic mean of the average deviations between model

and test data.
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CL : .020, KN = 4, Ke= 90, KP = .110, KH = .110,
KT = .010, DIR. = BI

.28

*1.26 C3~ r cEua3OiAn.

.24 .,0.

.22

X/

.18

",16

** o

.12

-Calculated (smooth)
.10 / -- Calculated (rough)

.06

.. O

.02
4i

0 10 0.2 0.4 0.6 0.8 1.0

1 - (O"Jlu 2

-. 4

.44

Figure 10. Model comparqd to Ajllisoi Z-0 r~g test data for

straight seals with smooth or rough lands.
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FIVE SLANT KNIFE STRAIGHT SEAL - SMOOTH LAND

CL- .010, KN =5, KP -. 110, KH -.110, KO e 60, DIR -81

.32* -r -

A - Design Model
.28 Test data

; .24

:IIO

.04 [
0 12 .4 .6 .8 1.0

Figure 11. Model comp~ared to Allison 3-0 rig test daia for a slanted five-knife
straight Sed) with a* Smooth land.
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-'4.4 STEPPED SEAL MODEL

Stepped seals are designed to minimize the dynamic pressure recovery from one
*' knife to the next by disrupting the velocity carry-over. Accordingly, the

straight seal model approach which correlated the jet expansion angle in terms

of cavity dimensions has limited physical applicability to stepped seals. The

test data show that stepped seals flow both more and less than comparable

straight seals depending primarily on the operating clearance. Consequently,

a more comprehensive model is required to account for the influence of the

additional geometric parameters of step height (SH) and distance-to-contact

(DTC) which affect the performance of STLO and LTSD stepped seals differently.

Physically, the flow between knives it, a stepped seal does carry-over some of

the velocity head to the next knife. But while the intervening flow path dis-

sipates a large part of the velocity head, it also affects how the flow enters

the next knife and, thereby, influences the loss coefficients of that knife.

The complex flow patterns involved woaId make correlations for corrections to

the individual loss coefficients difficult to determine accurately. Conse-

quently, a different approach was taken to include all of the diverse flow

- distortion and loss mechanisms into a single area correction factor (XMUL) for

a knife throat downstream of a step. This factor is a multiplier on the flow

area and can be less than or greater than unity. It accounts for carry-over,

additional pressure loss in the flow turning between the knife face and step,

which is important for small distances to contact (OTC). and flow distortion

into the next knife throat.

The 4asic model for stepped seals assumes that the flow behaves as if it were

passing through a series of single-knife seals. Correlations for X14UL were

cbtained through a procedure similar to that followed to evaluate a for

"straight seals. For a range of XMUL values performance predictions were

calculated from the Design Model for the stepped seal configurations in the

-V data base. A comparison of these results with the test data yielded the re-

quired XMUL value for each configuration. Figure 12 shows a typical comparison

plot. The area multiplier (XMUL) was found to vary from 0.55 to 1.32. A cor-

relating equation for XMUL in terms of the influential geometric parimeters
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STLD STEPPED SEAL WITH SOLID-SMOOTH LAND
KP = .275, CL .030, KN a .04, KH .176, SH .125
DTC =.22
KO a 906

.16
- (XHUL)AREA MULT. -

*• - LEGEND
• - /TEST DATA -

.14 -- o--- XMUL AREA MULTI - - ....... 800 -

.900 - 1.31.000 -
1.100

i ~1. 200
.12 .. 1.2

01.1

.10 / 5•1

il.08 O/ / .9
it S

1/70
".06 /0

"0.7

.04/./ 1-

II :•: ~ ~.02 z;.

0
0 .2 .4 .6 .8 1.0

. - (PD/PU) 2

" Figure 12. Determination of the area multiplier for a stepped seal.
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was derived using a multiple linear regression analysis. Stepped seals with

STLD flow direction, backward facing stator steps, were analyzed first because

of the larger data base (62 configurations). A correlation for the LTSD flow

direction was obtained from comparisons of the STLD equation to the LTSD test

data (15 configurations). A correction equation based on the comparable STLD

stepped seal was derived. This approach provided the best extrapolation of

the narrower parameter ranges for the LTSD stepped seal data. Figure 13 gives

the STLD and LTSD correlations for XMUL and their respective parameter ranges.

Roughened land surface effects for stepped seals were handled in the model
with a procedure similar to that developed for straight seals, i.e., adding a
friction head loss term (Kf rough) to the Kvf for a smooth wall and in-

creasing the throat area by the amount of the roughness. The effective length

of the rough wall was taken equal to the knife tip thickness because the steps

induce significant flow separation in the interknife cavities. This wall

friction model produces good agreement with the test data.

Figures 14 and 15 show typical comparisons of model results with test data in

the data base. The Design Model deviations from the test data are summarized

4. in Table 9 for all of the stepped seal data in the data base. The disagree-

ments between test data and Design Model predictions are within +5%.

4'45
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STEPPED SEAL AREA MULTIPLIER, XMUL

STLD Flow Direction

C8 C CI

XMUL = C7 (DTC/CL) (KT/CL) 8 (DTC/(KP-KT)) (KH/CL) 10

((KP-KT)/KH) ' (SH/CL)
. * .(SH/C) 12/J(DTC/CL)2 + C13

0.85 < DTC/CL < 40, 0.21 < KT/CL < 2.6, 0.09 < DTC/(KP-KT) < 1.0,

5.1 < KH/CL < 19.4, 1.16 < (KP-KT)/KH < 1.76, 2.0 < SH/CL < 29.4

LTSD Flow Direction

XMUL XMULsTLD C (KH/CL)C1 5STL " 14

*1 4.0 < DTC/CL < 19.4, 0.50 < KT/CL < 1.5, 0.35 < DTC/(KP-KT) < 0.50

* ,~ 5.1 < KH/CL < 28, 1.02 < (KP-KT)/KH < 1.9, 4.0 < SH/CL < 12.5

I'.

Note: The limits on the seal parameters result from the range of the seal
geometries used in developing the correlation equations.

•1'

WALL ROUGHNESS

K a K' + K" vf vf f rough

Krough f(c/H, Re, KT)

t t smooth (cL )

Figure 13. Stepped seal correlations in the Design Model.
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4 KNIFE STEPPED SEAL SOLID-SMOOTH LAND

DESIGN MODEL
.28- TEST DATA

.24

.20-

* I I

.16

.4.

.12L

N• el

i.08

0
0 .2 .4 .6 .. 1.0

1 PD/PU)2

V.2

Figure 14. Design Model compared to Allison test data for a stepped seal
with a solid-smooth seal.
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CL = 0. 020 i n
Kn = 2
KP = 0.400 in.
KH = 0.280 in.
KT = 0.015 in.
K0 = 70 deg
Rough = 300 Ain.
Direction = LT SD

.22 - SH= 0.120 in.
S...........I -DTC 0.194. in.

1:" .20

.18 i- 0

07~
".16

.. 14

,.. 12 L

cc _.. Design Model

.14

.4. .08 •- /I, i/

S[ '
S.o4k .06

.. 0

* .02 - ,7 "
4,÷

0*~
0 .2 .4 .6 .8 1.0

,4 l-(P0 /Pu)

Figure 15. Design Model compared to Allison test data for a
stepped seal with a rough land.
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Table 9.
Design Model error results for stepped seals.

Number of Avg Error*

Type Source Configurations M

Multiple knife Caunce & Everitt 44 2.9

(STLD only)

Harrison 8 5.3

(STLD only)

DDA

STLD data 9 4.0

LTSD data (includes 24 4.8

roughened land)

Both 3....3 4.6

All 85 3.8

I"

"*Average error is the arithmetic mean of the average deviations between model

* land test data.

"S..
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4.5 DESIGN MODEL COMPUTER PROGRAM

The Design Model for calculating the flow through labyrinth seals has been

* coded in Fortran IV language for rapid and comprehensive computations. The

one-dimensional compressible flow equations satisfactorily represent the flow

in the knife throats when they are coupled with empirical relationships for
S41 1 . ....the_..oss..coe•f.fi£cients..... hi~s.-.s~emti -emp-iral a- etis-as-g••teprsue..........

distribution through the seal. The model accurately predicts straight and

stepped seal leakage within +5% for a wide range of seal parameters encountered

in gas turbine engines. Since the model considers one knife at a time, non-

constant geometry seals, e.g., different clearance at each knife tip, can be

considered. Nonconstant seal geometry can accommodate mixed straight and

stepped configurations in a single seal.

Features available in the Design Model code include:

o abbreviated input where possible

o override available for many of the loss coefficient parameters

o function loss can be specified instead of or in addition to the three

loss coefficients

o nonconstant geometry straight and stepped seals, or a mixed combinat4on

of the two, can be considered

o calculations for two-dimensional (rectangular) seals are possible to

simulate some static seal rigs.

o calculation options are available:
pressure distribution for a given flow rate.

pressure distribution and flow rate for a given overall pressure ratio.

flow characteristic curve (, versus P

A comprehensive description of the structure, capabilities, and use of this

computer code is presented in Reference (68).

uso
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A Design Model verification test was made with previously untested stepped

seal hardware. This seal configuration was not part of the data base used to

derive the Design Model. The vertical knife stepped seal was tested in the

STLD configuration statically and dynamically at 246 and 492 ft/sec average

knife tip speeds. The measured performance and the performance predicted by

4

the deiamodel are plotted in Figure 16. Table 10 compares the design model

performance predictions with the test data;- The correlation between measured

and predicted seal performance was within one percent throughout the pressure

ratio range tested. Although this was a single point check, the predictive

* capability of the Design Model within the limits specified for the labyrinth

* seal parameters is expected to be within +5% of the true value for conventional

seal configurations at clearances greater than 0.005 in.

Table 10.
Comparison of the verification test results with the

Desicin Model performance prediction.

/lb m 
OR 1/2

lb f sec _____V.T.

lll ADssig n Model verilcation test

dtDesign Model h tic condition ste.p L

1.0 0 0
-- 1.25 0.1508 .152 -0.8

1.50 0.1857 .187 -0.1

2.00 0.2142 .216 -0.8

4.50 0.2379 (.237)* (+0.4)

Average -0.8

*Extrapolated from elliptical coordinate plot of the measured data. Not

included in overall average.
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5.0 LABYRINTH SEAL DESIGN OPTIMIZATION

The Design Model is a performance analysis tool for a specified labyrinth seal
geometry. The seal designer often needs to solve the inverse problem: con-

figure a seal to minimize the leakage for a particular application. The seal

design is generally constrained by installation and fabrication limits. Con-

sequently, the haphazard selection of candidate seals from among the myriad

possible designs on the sole basis of experience criteria will seldom result
in a "best" choice. However, mathematical optimization theory provides a reli-

able and efficient iterative procedure for determining the best seal design.

5.1 OPTIMIZATION ALGORITHM

The optimization of a seal geometry from the performance predicted by the De-

sign Model requires the maximization of nonlinear functions of the independent
*1 variables, which are subject to nonlinear equality or inequality constraints.

The nonlinear constrained optimization is transformed to an unconstrained

problem through the use of a penalty function. Then the variable metric meth-

od of Fletcher-Power-Davidon is used to solve the problem. This approach ap-

"plies to continuous variables and is reliable even for erratic functions that

_ _are frequently encountered in design problems.
i i

Discrete variables, e.g., the type of seal, the number of knives, and the flow
direction, are also encountered in the optimization problem. The algorithm

performs the continuous variable optimization for each set of discrete vari-
able values. Then the individual optimum designs are compared to determine

the overall optimum seal design.

Constraints have been included in the algorithm to ensure that the optimized
seal configuration satisfies the design requirements. Constraints on the dis-
crete variables simply limit the matrix of values considered in the trial and
comparison procedure. Constraints on the continuous variables are imposed by

adding inequality penalty functions to the functions being optimized. A
* penalty function equals zero if the design meets a given contraint. It is
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greater than zero if the constraint is violated, and the penalty varies para-

bolically with the magnitude of the violation. Each continuous variable con-

straint has one .-. •Ity function associated with it.

A driver routine has been programmed for the Design Model code which calculates

the independent parameter values to be evaluated in the search for an optimum

configuration. This driver automates the procedure of: (1) determining the

overall design constraints, (2) selecting the allowable range of each parameter

to meet design and model constraints, (3) using the Design Model to calculate

the leakage flow rate for a matrix of possible seal configurations, and (4)

optimizing the seal design from the performance matrix, i.e., finding the seal

geometry with the lowest leakage.

5.2 OPTIMIZATION CAPABILITIES

. Three types of parameters are involved in the seal optimization process: (1)

input parameters which are held at specified constant values during the opti-

mization, (2) optimized parameters which will define the unique best seal con-
figuration, and (3) constraining correlation parameters which limit the para-

metric search to the Design Model envelope. The optimization of a seal design

can consider a matrix of these parameters listed in Table 11. Input parame-

ters have constant values imposed by the operating environment of the sealing
application or by physical limitations of the design or fabrication processes.

The parameters defining a maximum seal geometry envelope. i.e., Lmax and
H , are optional and should be stipulated only if the space allocated to

the seal is limited. The optimized parameters are either continuous or dis-
crete functions. Each discrete parameter defines an optimization matrix which

is solved by the variable metric method. The optimum solutions for each dis-

crete parameter are compared to obtain the best seal configuration. The con-

straining correlation parameters limit the selection of the best seal design

so that the parametric correlations in the Design Model are not extrapolated

beyond their reliable range. Alternative constraints can be superposed on the

optimization by the input of minimum and maximum values for the continuous hnd

discrete optimized parameters. These additional constraints are arbitrary and
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optional, similar to the use of the overall seal length and height specifica-

tions. If the program limits on an optimized parameter are not overridden by

input data, the constraining limits are set by default to the code values.

Table 11.
Design Molel optimization parameters.

Input Parameters Optimized Parameters

,-Straight and Stepped Seals Continuous Variables

Clearance (CL) Knife height (KH)
Temperature (T) Knife pitch (KP)
Inlet total pressure (Pu) Knife tip thickness (KT)
Pressure ratio (PR) Knife angle (Ke)
Knife radius (KR) Roughness (c)
Knife taper angle (K0) Step height (SH)**
Maximum axial length (Lmx)*

e i .ý,?ed Seals Only Discrete Variables

* Maximum seal height (Hmx)* Seal type (straight, stepped)
Distance to contact (OTC) Number of knives (KN)
Maximum or minimum diameter (Omax. Dmin) Flow direction (LTSO, STLO)**
Minimum knife pitch (KPmin)

(= 2X maximum allowable axial travel)

-4 *4* *Optional
* **Stepped seals only

CQnstrln ing Coryrelation Parameters

'traiaht Seals Stepped Seals

KT/CL XT/CL
.eRe

(KP-KT)/KH (KP-KT)/KH
- 30)/CL OTC/CL

SH/CL
KH/CL
(C - 30)/C-
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The optimization code capabilities can be summarized as follows:

o Constant geometry straight and stepped seals can be considered. However,

variable parameters from knife-to-knife or mixed straight and stepped seal

geometries cannot be optimized.

o An optimum configuration may be determined for both seal types and for

both flow directions through the stepped 3eals. Any subset of these may

* be considered.

o Each independent parameter has a default range which may oe overridden.

Even the correlation parameter ranges may be overridden if desired.

o An independent parameter may be held constant (by inputting both its mini-

mum and maximum values equal to the one desired).

o Before optimization is attempted, the parameter values and ranges are

checked to be sure a solution is possible, e.g.. a solution is impossitle

if Lmax is less than the minimum KP divided by the maximum KN, If a

solution does not exist, information is printed desc.ribing the problem.

"and the execution of the data set is halted.

o Intermediate output information is given for each combination of discrete

variables employed. This output information includes algorithm parameter

values, derivatives of the optimized function with respect to each con-

tinuous variable, and comparisons of the continuous variabie values with

the allowable ranges.

o Final output information includes sensitivity results for each discrete

variable step and summary data for the optimum seal cnnfiguration desig-

nated.
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The output information not only defines the optimum seal configuration but in-

dicates the effect, if any, of imposing each constraint. Also, the improve-

ment in decreased leakage of the optimum configuration compared to the other

possible configurations is given. This information can be used to assess the

penalty caused by each limiting censtraint and the penalty for choosing an

alternate design.

A detailed description of the optimization algorithm and its use with the

Design Model code can be found in the User's Manual (68). A sample input file

and the resulting optimum seal configuration output are included.
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6.0 LABYRINTH SEAL EXPERIMENTAL INVESTIGATION

The labyrinth seal rig tests were designed to extend the ranges of geometric

parameters in the data base for the design model development, to provide veri-

fication of the capabilities of both the Design Model and the Analytical Model,

and to substantiate the physical reality of the flow-field structure calculated

:1 *by the Navier-Stokes analysis model. The bulk of this seal performance test-

ing was done in the two-dimensional (2-D) static rig. This rig was also uti-

lized as the test section for schlieren flow visualization apd flow field

velocity measurements in large-scale seal models. Supporting performance tests

were made independently with intracavity pressure and temperature instrumenta-

, tion. A program to characterize the leakage performance of typical straignt

seals and stepped seals with open-cell honeycomb lands was run statically and

- dynamically in the three-dimensional (3-0) test rig. The effects of knife ro-

tation on full-scale straight seals with smooth and rough lands were investi-

gated using intracavity pressure instrumentation. Verification tests were run

on the 3-f dynamic rig with a seal configuration which had not been previously

tested.

6.1 TEST RIGS AND PPOCEDURES

-* Two complementary test rigs were used to acquire the variety of data required

to support the development of the analytical models. A cost effective two-

dimensional (2-0) static rig was employed to obtain the seal performance data

for the full-scale models of straight and stepped seals under the influence of

geometric and land surface roughness %3riations. This 2-D rig was also used

to study the internal details of the labyrinth seal flow through large-scale

models which were also suitable for flow field velocity measurements with hot-

wire anemometers and for flow vi;ualization with a schlieren technique devel-

oped specifically for the purpose. A three-dimensional (3-0) dynamic rig was

used to investigate the performance perturbations imposed by rotating knives

"* next to several different land materials with annular clearance gaps. The

following sections describe the test equipment and instrumentation utilized to

obtain these data.
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6.1.1 2-D Static Rig

The terminology, 2-D (two-dimensional) static test rig, is based on the seal

models which are installed in the rectangular test section. These models do

not simulate the effects of seal curvature or rotation and involve small end-

wall effects. However, the high aspect ratio test section, 6.28 in. wide,

minimizes these end effects.

Building block, adjustable seal hardware is used to obtain versatility and

multiple use of components. Individually adjustable knife and land sections

can produce continuous changes in the primary geometric variables of straight

and stepped seals in a cost effective manner. The features incorporated in
the rig design, Figure 17, allow one set of knife hardware to cover the con-

ventional range of variation in:

o knife clearance
o knife pitch

o knife height

o number of knives

o step height

o distance-to-contact (axial clearance)

The maximum test envelope will accommodate a seal length of 2.0 in. This

test section will allow a considerable number of straight seal knives (depend-

ing on pitch) and stepped seal knives to be tested at full-scale over a com-

plete range of clearance encountered in small and large high-temperature air-

* craft engines.

Figure 18 shows a close-up view of the 2-0 rig test section with a four-knife

stepped seal installed. Each knife and each land are an individual horizontal
* piece and can be adjusted in an axial direction relative to adjacent pieces to

make arbitrary changes in the pitch. Step height can be varied by inserting

shims (not shown) between adjacent knife and land sections. The knife pitch

and axial seal clearance (OTC) can be easily changed with the adjustment
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S~screws as shown in Figure 18. Vertical clearances between the corresponding

lands and knives can be varied by clearance shims as noted. Changes in knife

• height are accomplished by filling the knife cavities with low temperature
i pattern wax. The number of knives are easily variable by removing or adding

corresponding knife and land sections, For vertical knife seals, the flow di-

rection through the seal can be changed by reversing the knife and land found-

ations. Changes in knife angle and land contour do require different hardware.

"I ~Figure 1g shows a close-up view of a four-knife straight seal installed in the

2-0 test section. The straight-seal assembly is similar to, but simpler than.

that for the stepped seal since one land section is required. Spacers between

knives. with specific height and thickness dimensions, are used to adjust knife

,. pitch and height in the straight seal.
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nfe-Landlaac hmM e Knifc-nd Vertical Clearance Shims 0N Knife Pitch Adjustment Screws

7 1 W A-
Land Pitch Adjustment Screws

K•ife-Land Axial Clearance Adjustment

Seal Knife Foundation Locking Screws

Figure 18. Two-dimensional (2-0) labyrinth sea] rig withstepped seal installed.

SEX
.5.

.4'

TE-9619
Figure 19. Two-dimensional (2-0) labyrinth seal rig with

straight seal installed.
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The 2-0 rig installation permits aerodynamic evaluation of seal performance to

a seal inlet pressure of eight atmospheres at room ambient temperature. The

test condition range and the local Mach iiumbers encountered in the seal flow

limit pressure and temperature variations in air to compressibility factors,

mZ = Ps/Rt, near unity. The desiccated air supply prevents the possibility

* . of variation in the test fluid due to composition changes and removes any
chance of condensation shocks. The rate of change of thermal characteristics,

A V

c and y, for air is small in the ambient temperature range. Therefore,

the 2-0 rig test environment enhances the accuracy and generality of the data

-re-aduction procedures. The primary modeling variable which is not controlled

is Reynolds number, which varies primarily with seal model scale.

The rig normally discharges to the atmosphere outside the test cell through a

5.76 in. inner diameter (I.D.) pipe which creates less than 0.2 psi pressure

loss.

The flat plane walls forming the rectangular test section of the 2-0 rig ex-

"perience small structural deflections which can result in clearance changes

under high air pressure loading. A micrometer dial gauge (see Figure 20) with
0.00002 in. readability is mounted on the top plate to monitor the relative

movement of the seal knife hardware, which is indicated by the vertical travel

of the follower pin.
'S'

'K, The 2-0 rig allows an extensive survey of seal geometry and material effects

on performance to be accomplished expeditiously at minimal costs In hardware

* .fabrication, manpower, and schedule.

, 6.1.2 2-0 Rig Modified for Flow Visualization

Aluminum side plates with 5.5 in. x 3.5 in. x 1/2 in. thick plate glass windows

.". at the seal model viewing location, were substituted for the standard steel

side plates used in normal performance testing, Figure 21. These two matching
side plates were made for use with the schieren optical imaging technique and

a laser doppler velocimeter (LDV) system. The side plate windows are limited
to a pressure difference of 15 psi, but this pressure level is adequate for rig
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testing with large-scale models. The conventional pressurized inlet plenum

was employed for some of the schlieren testing, but better flow visualization

and flow field velocity measurements were obtained with an atmospheric inlet

and discharge evacuated by a steam ejector. Pressure ratios to 3.5 were ob-

tained within the structural limits of the window glass with this pump-down

arrangement.

Intraseal instrumentation requirements and flow visualization limitations
placed constraints on the minimum model scale for the seal. The relatively
small dimensions of the full-scale seal models prohibit accurate visualization

"* of local flow-field phenomena. Therefore, a ten times (lOX) full-scale seal

model size was selected as the largest scale reasonably accommodated by the 2-0

rig and air supply. Additional constraints on step height limited the size of

stepped seal models to five times (5X) full-scale. Classical flow similarity
,-,theory governed the design which preserves the ratio of pressure forces to

inertia forces and compressibility effects at the expense of variations of the

ratio of viscous forces to inertia forces. Then the observations and measure-
ments of the fluid dynamics in the large-scale seal will be comparable to

those in the full-scale seal when flow similarity is independent of Reynolds

-, number.

6.1.3 3-D Dynamic Rig

The terminology, 3-0 (three-aimenslonal) dynamic test rig, is based on the
* circular geometry of the seal models. The test seals typically have a maximum

diameter of 6.00 in. and can be run at rotational speeds to 30,000 rpm for the

simulation of actual engine applications. The 3-0 rig rotor is driven by an

A impulse turbine with speed control that is independent of the seal inlet pres-
sure. Therefore. static performance (at 0 rpm) and the influence of knife tip

speeds up to 785 ft/sec can be evaluated over a range of seal pressure ratio

from 1.0 to approximately 0. 3 21'V-C. Figure 22 shows the 3-0 rig installed

in the research test facility. The principal %ubassemblies are identified in

* iFigure 23.
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The seal knife geometry is normally tested on the rotor which is a unique com-
bination of knife angle, number of knives, pitch, and knife height for a given
flow direction and step height in the case of stepped seals. The matching
stator is designed for a single clearance and can be reversed for the large-to-
small diameter (LTSD) and the small-to-large diameter (STLD) flow direction
testing in the case of stepped seals. Similarly, vertical knife stepped seal
rotors can be tested in both flow directions. The distance-to-contact (DTC)
for stepped seals or knife position over the land, as in the case of straight
seals, can be varied by inserting shims behind the stator housing.

6.1.4 Test Rig Instrumentation

* Comparable air temperature and static pressure instrumentation are used to
determine the seal leakage performance in both the 2-0 static rig and the 3-0

* ,•dynamic rig. The 3-0 rig employs additional temperature and static pressure
instrumentation to define the tubine power produced during dynamic operation.
Dynamic testing also requires some electronics to record rotor speed and to
monitor two-degrees-of-freedom vibration levels at the seal test and turbine
drive sections. Both rigs have been modified to accept instrumentation within

the seal model.

**. 6.1.4.1 2-0 Rig Instrumentation

The instrumentation locations for the 2-0 rig are shown schematically in Figure
24. Airflow through the seal model is determined with a standard ASME square-
edge orifice with static radius taps.

Static pressures are measured upstream and downstream of the airflow orifice,
at the seal inlet plenum, and at the seal downstream plenum. All of the
large-scale seal models were instrumented with static pressure taps of 0.020
"in. diameter located on the longitudinal centerlines of the knife-tips well

away from any sidewall influence. Additional cavity static pressures were
installed at appropriate axial locations in the same longitudinal plane.
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Air temperatures upstream of the airfhnw measuring orifice and
ic n pstream Of the

seal model are measured with shielded iron 
th sal oelC one the -

Two I.C. thertOucOUes are located downstream Of the se et

couple in the downstream PiUn of the test section •n one e~oCOUPle in

the exhaust pipe. All of the large-scale seal MOde ri
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in the velocity carry-over Jets. The cavity theasOCpuples Allro bthe tippedr

The carry-over thermocouples were shrouded and taps t e p ride

couples were located out of line with the 5t"ti preU0 taps to provide

reasonable isolation from wake spreading.

6.1.4.2 3-D Rig jostrumentatin

The 
,istrumentatiOn locatiOi or the 3-0 rig are shown schematically in figure

25.he itrfenlow oitio. re•uire to define the seal leakage performance in
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Figure 25. Typical three-dimensional dynamic seal test
rig instrumentation.

4. A larger diameter ASAI square-edge orifice is required for the 3-0 rig which
will pass three times the airflvwt rate as a similar 2-D rig seal configuration

under the same pressure ratio.

The labyrinth seal upstream pressure is sensed on the diffuser wall well away
from the local acceleration of the flow entering the seal and away frtm the

, vortex pumping of the rotor. The upstream I.C. therOcouple is deeply itmersed
near the axis of rotation of the 3-D rig rotor. The seal downstream pressure
and temperature measurements are made in the discharge jet from the seal.

Five static pressure taps of 0.020 in. diameter were positioned in the smooth
S 'and -ough stators, halfway between the knife tracks of the four knife straight
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seal, and on the same spacing ahead of and behind the rotor. No intraseal

pressure instrumentation was installed in the stepped seal models or in the

honeycomb seal models.

Additional data for the airflow conditions in the turbine section of the 3-0

rig are necessary to define the power delivered to the rotor during dynamic

testing. The turbine airflow is measured in the supply line with a standard

ASME thin-plate, square-edge orifice. One additional thermocouple is required

to measure turbine orifice inlet temperature.

Several operating parameters are monitored to ensure proper and safe dynamic

testing in the 3-D rig. The most important of these from the standpoint of

good performance measurement is the static pressure in the rotor thrust

balance cavity. Here the thrust bearing load is controlled, which is crucial

to valid power absorption data. Lubrication system pressures and temperatures

are monitored as a safety precaution.

6.1.5 Data Reduction and Calculation Methods

The leakage performance of a labyrinth seal correlates on the airflow

parameter,

PU At

as a function of the seal pressure ratio, P /P in the absence of Reynolds
U Dt

number or heat transfer effects. When the discharge pressure and inlet air

temperature are approximately constant, the test Reynolds number is invariant

at a given rressure ratio. The test air is delivered at essentially ambient

temperature. The heat transfer influences are also minimized by the ambient

temperature test fluid. The seal throat area is corrected from the buildup

clearance measurements for rig case deflections in the 2-0 rig and for rotor

growth at dynamic conditions in the 3-D rig.
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The data repeatability of the 2-0 rig and the 3-D rig is typically ±3%. Cor-
relations between test results from the 2-0 rig and the static 3-0 rig are

*: good with the principal variations attributable to the clearance area change

through the stepped seal hardware for the 3-0 rig.

When the local envirornment of an engine labyrinth seal is known in terms of air
temperature (Tu) and the hot running clearance of the seal is specified so
that the flow area can be calculated (At), then a unique iterative solution
for compatible leakage flowrate (w), upstream pressure (Pu), and downstream
pressure (P,) is defined by the generalized seal performance curve
(w' PU At versus Pu/P,) in conjunction with the other restrictions
in the seal flow circuit. The potential errors incurred by the extrapolation
of this room temperature and barometric discharge pressure data to higher
temperature and pressure engine environments are a function of Reynolds number
and heat transfer effects. Generally, Reynolds number is most strongly in-
fluenced by model scale rather than kinematic viscosity of the air. Ordinarily
heating of the seal leakage is influenced by rotor windage, seal pumping, and
environmental heat transfer. Modeling of these secondary variables would re-
quire a full-scale engine seal with actual simulation of the thermal and pres-
sure environment or an analytical model with this theoretical sophisticatioA.
The complication and expense of such rig testing makes the performance gener-

. alizing procedure the most feasible empirictl approach. The Navier-Stokes
Analytical Model could be used to calculate correction factors for Reynolds
number and heat transfer effects in much the same manner that specific heat
and humidity corrections have been developed for turbine engine performance

parameters through aerothermodynamic cycle analyses.

6.2 PERFORMANCE TESTS ON FULL-SCALE LABYRINTH SEAL MODELS

*,, Performance tes;ts were run on selected full-scale models of straight and
stepped labyrinth seals to extend the range and distribution of the geometric
parameters for the Design Model data base, to evaluate the Design Model pre-
dictions for straight seal configurations outside of the conventional range of
interknife cavity geometry, and to characterize the effect of open-cell honey-
comb lands on the performance of straight and stepped seals.

73A



One of the objectives of the literature survey was to identify the geometric

parameters which affect the performance of labyrinth seals and to determine

their ranges of application in the gas turbine industry. These parameters for

straight and stepped seals are summarized below:

KN number of knives

KO knife angle

CLKT relative knife tip thickness

SKCP relative knife pitch

CL

relative knife height
CL

S~KP
KP- interknife cavity aspect ratio
KH

C
C=_L land relative roughness S~2CL

*" for stepped seals only

SH
CL" relative step height

DTC relative distance to contact

STLD
or flow direction

LTSD

The tests required to fill voids in the available data base matrix were planned

on the basis of these generalized geometric parameters. The performance data

used in the multiple linear regression analysis for the Design Model develop-

ment were correlated with seal geometry defined by these parameters.

A significant reduction in the number of tests required for the formulation of

a comprehensive design model was made possible by the application of statisti-

cal analysis to model theory for compressible flow similarity.
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6.2.1 Design Model Data Base Extension

Twenty-three performance tets were made over pressure ratios to 6 in the 2-D

static labyrinth seal test rig. Of these, twelve were straight seal tests

and eleven were stepped seal tests to augment the data base for the develop-

ment of the Design Model. Table 12 lists the geometrical details of the seal

configurations and the data voids filled by the tests. The performance data

from each of the tests are presented graphically in Appendix B.

6.2.2 Effect of Interknife Cavity Aspect Ratio in Straight Seals

* Komotori and Miyake (37) contend that an optimum interknife cavity aspect ratio

exists for straight seals near a KP/KH.4. The earlier testing at Allison in-

"dicated a minimum straight seal leakage when the interknife cavity was square.

,". The compilation of these somewhat conflicting empirical results into the data

4 .. base for the Design Model was certain to skew the predictive capability away

from the measured performance of the individual tests in the set. Consequent-
ly, an evaluation program was conducted to determine the capability of the De-

sign thodel to predict the performance of straight seals that were not in the

data base which have a range of interknife cavity aspect ratios, 0.4 < KP/KH <

4.0. A nominal envelope of relative seal geometries was covered by varying

the clearance between 0.005 in. and 0.020 in. and testing two and four

knives. Eighteen configurations of straight seals with vertical knives were

¶, tested in the 2-D rig. The geometric parameters of each test are listed in

Table 13 with the evaluation of the Design Model prediction at a seal pressure

ratio of 2.0. The plots of the seal performance measured and predicted are in

.* Appendix C.

From these tests it was concluded that:

v o the Design Model predicts the flow parameter * too high for low
interknife cavity aspect ratios, KP/KH < 1.0.

o the Design Model predicts the flow parameter * too high for small

clearance. CL 0.005 in.

• 75



.Ji a 4 b .JJ j

" "a %S, a %a

z - zzx 9 :z Cz z

44 40 V 4A & 1 V I I! 4A4 4
V4

W -

0. Ii o o o o o o o o o o o

a.4

• •ooo0o0 o ~ 0
.4%..&

ooa ~ 0 0 00 oooooo6o

"* !ii

II.~~1 v. .444. 61J .

0 .

41 IN (4ft

476

2U



Table 13.
Effect of KP/KH, KN, CL on vertical knife straight seals at P u/P = 2.0.

Test KN KT KH KP CL 1T .DM 'DM/0T
No. in. in. in. in. Test Design

Model

1 2 0.010 0.110 0.044 0.005 0.327 0.445 1.361
2 2 0.010 0.110 0.044 0.010 0.400 0.451 1.128
3 2 0.010 0.110 0.044 0.020 0.418 0.455 1.089
4 4 0.010 0.110 0.044 0.005 0.314 0.415 1.322
"5 4 0.010 0.110 0.044 0.010 0.375 0.435 1.160
6 4 0.010 0.110 0.044 0.020 0.414 0.448 1.082
7 2 0.010 0.110 0.220 0.005 0.302 0.349 1.156

"8 2 0.010 0.110 0.220 0.010 0.346 0.352 1.017
9 2 0.010 0.110 0.220 0.020 0.357 0.374 1.048

10 4 0.010 0.110 0.220 0.005 0.232 0.269 1.159
11 4 0.010 0.110 0.220 0.010 0.268 0.277 1.034
12 4 0.010 0.110 0.220 0.020 0.304 0.306 1.007
13 2 0.010 0.110 0.440 0.005 0.275 0.333 1.211
14 2 0.010 0.110 0.440 0.010 0.325 0.328 1.009
15 2 0.010 0.110 0.440 0.020 0.325 0.335 1.031
16 4 0.010 0.110 0.440 0.005 0.182 0.249 1.368

. 17 4 0.010 0.110 0.440 0.010 0.236 0.243 1.030
18 4 0.010 0.110 0.440 0.020 0.243 0.254 1.045

o the Design Model predicts the flow parameter * very well at high

interknife cavity aspect ratios, KP/KH > 1.0.

o the Design Model predicts the flow parameter 0 very well for large

clearances, CL > 0.010 in.

These test data imply that the minima predicted for the flow parameter of

straight seals near a clearance of 0.010 in. may not exist, or at least occurs

"at a clearance less than 0.005 in. This abberation in the Design Model may be

due to the difficulty in determining the actual clearance in seal models that
* are tested at clearances of 0.005 in. and less. The experimental uncertainty

in seal data at small clearances is significantly greater than that obtained

at clearances of 0.010 in. and greater.

% 6.2.3 Effect of Open-cell Honeycomb Lands in Straight and Stepped Seals.

"Limited experimental data acquired during a NASA sponsored program (54)

indicated that in four-knife straight seals:
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o honeycomb reduced leakage at large clearances,

o honeycomb increased leakage at small clearances,

o small cell size showed the least sensitivity to clearance.

A single test with an advanced four-knife stepped seal suggested that severe

leakage penalties might be associated with the use of open-cell honeycomb in

stepped seals. A slanted knife straight seal which was tested during an IR&D

program showed that this seal leaked more with open 0.062 in. cell honeycomb

than a similar straight seal with vertical knives. Dynamic testing with open-
cell honeycomb lands in straight or stepped seals revealed a characteristic

where leakage increased with knife tip speed, which is contrary to experience

with solid-smooth lands. The apparently anomolous behavior of labyrinth seal

leakage with open-cell honeycomb lands stimulated an interest in acquiring
enough additional performance data to verify or refute the earlier

observations.

The objective set for this program was to experimentally quantify the flow
characteristics of straight seals with vertical and slanted knives over a

conventional range of knife tip clearances. Three honeycomb cell sizes were
investigated in the 3-0 dynamic test rig, Table 14.

A sample of stepped seal performance was obtained with 0.062 in. open-cell
honeycomb lands to verify the surprisingly high leakage rate observed during
the NASA program. Vertical and slanted knives in both STLO and LTSD flow

directions were tested in the 3-0 dynamic rig as outlined in Table 15.

The data acquired from testing the five--knife straight seals are in excellent

agreement with the previous NASA data, Figure 26. The performance ratio of
honeycomb lands with respect to a baseline solid-smooth land provides a means

for estimating the performance of labyrinth seals using honeycomb lands from
the performance predictions of the Design Model. The test data from the
vertical knife straight seals are compared with the predictions of the KTK
model in Figures 27, 28, and 29. The Design Model performance correlated best
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Table 14.
Performance tests on honeycomb lands in straight labyrinth seals.

Test KO KN KT-in. KP-in. CL-in. X-in. b-in.

1 900 5 0.010 0.100 0.005 0.031 0.075
2 900 5 0.010 0.100 0.005 0.062 0.075
3 900 5 0.010 0.100 0.005 0.125 0.075
4 900 5 0.010 0.100 0.005 Solid Smooth
5 900 5 0.010 0.100 0.010 0.031 0.070
6 90° 5 0.010 0.100 0.010 0.062 0.070
7 900 5 0.010 0.100 0.010 0.125 0.070
8 900 5 0.010 0.100 0.010 Solid Smooth
9 90° 5 0.010 0.100 0.020 0.031 0.060

* 10 900 5 0.010 0.100 0.020 0.062 0.060
"" 11 900 5 0.010 0.100 0.020 0.125 0.060

12 9g0 5 0.010 0.100 0.020 Solid Smooth
"13 700 5 0.015 0.100 0.005 0.031 0.075

" 14 700 5 0.015 0.100 0.005 0.062 0.075
is 700 5 0.015 0.100 0.005 Solid Smooth
16 70° 5 0.015 0.100 0.010 0.031 0.070
17 700 5 0.015 0.100 0.010 0.062 0.070
18 700 5 0.015 0.100 0.010 Solid Smooth
19 700 5 0.015 0.100 0.020 0.031 0.060
20 700 5 0.015 0.100 0.020 0.062 0.060
21 700 5 0.015 0.100 0.020 Solid Smooth

- 22 500 5 0.015 0.100 0.005 0.031 0.075
"23 500 5 0.015 0.100 0.005 0.062 0.075
24 500 5 0.015 0.100 0.005 Solid Smooth
25 500 5 0.015 0.100 0.010 0.031 0.070
26 500  5 0.015 0.100 0.010 0.062 0.070
27 500 5 0.015 0.100 0.010 Solid Smooth
28 500 5 0.015 0.100 0.020 0.031 0.060
29 S0° 5 0.015 0.100 0.020 0.062 0.060
30 500 5 0.015 0.100 0.020 Solid Smooth

Table 15.

Performance tests on honeycomb lands in stepped labyrinth seals.

Flow
, Test direction KO KN KT-in. KP-in. SH-in. CL-in. Xin. b-in.

1 STLD 900 4 0.010 0.300 0.120 0.020 0.062 0.090
2 STI.D 900 4 0.010 0.300 0.12) 0.020 Solid Smooth
3 LTSD 900 4 0.010 0.300 0.120) 0.020 0.062 0.090
4 LTSD 900 4 0.010 0.300 0.120 0.020 Solid Smooth
5 STLD 500 4 0.015 0.300 0.120 0.020 0.062 0.090
6 STLO 500 4 0.015 0.300 0.120 0.020 Solid Smooth
7 LTSO 500 4 0.015 0.300 0.120 0.020 0.062 0.0908 LTSD 500 4 0.015 0.300 0.120 0.020 Solid Smooth
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-4
with the test data for the largest clearance, CL = 0.020 in. Figures 30, 31,

and 32 provide influence coefficients for honeycomb lands with vertical •nd
slanted knives over a range of clearances. These plots indicate that the

honeycomb lands leak more than solid-smooth lands as the relative cell size

(X/CL) increases, probably due to the large surface porosity. However, leakage

significantly lower than that obtained from a solid-smooth land can result at

sufficiently small relative cell sizes, X/CL < 7, probably due to the effect

of the roughness of the land surface. Slanting the knives of the straight

seal generally reduces the influence of the large (X/CL > .8) and small

(X/CL < .4) relative cell size honeycomb lands on the leakage performance.

The leakage of the large relative cell size (X/CL > .8) honeycomb lands de-

creases with decreasing knife angle, and the leakage of the small relative

cell size (X/CL < .4) honeycomb lands increases with decreasing knife

angle. Crossover characteristics exist for the leakage of intermediate

relative cell size (4 < X/CL <8) honeycomb lands. These characteristics can
be verified by reference to Figures 33 and 34.

Knife rotation appears to have three distinct and essentially independent ef-

fects on the leakage performance of labyrinth seals: the thermodynamic effect
of disk pumping on the inlet total temperature to the seal. the dynamic effect

of the centrifugal forces on the seal flow-field structure, and the abrasive

wear of the rotor knife tip and land. The abrasive wear effects result from
the thermal and dynamic characteristics of the engine structure and the

tribology of the seal materials. The disk pumping effect is influenced by the

disk face geometry, wheel to stationary panel Spacing, and thrs.ugh-fiow

(ventilation) in the wheel space. The rotational effects on the seal flow

field are influenced by the gemetry of the labyrinth seal and the surface
structure of the stator land. The typical influence of rotation on conven-

tional straight and stepped seal configurations produces between 5% and 10%
leakage reduction at 785 ft/sec knife tip speed when compared with static

performance. With a smooth land surface, the effect of rotation is small.
However, with a roughened land or stepped seal configuration, the effect of
rotation may be sizable.
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Rotation of labyrinth seal knives reduces the flow parameter as knife tip speed
increases near a solid-smooth land. The effect of open-cell honeycomb lands
is similar in the roughness dominated domain at small relative cell sizes,
Figure 35. However, as the relative cell size increases, the porosity effects

become significant, and the flow parameter tends to increase with knife rota-
tion, Figure 36. Then in the porosity dominated domain (X/CL > .8), the seal
leakage increases with increasing knife tip speed, Figure 37. The slanted

knives exhibit effects similar to those of the vertical knives on leakage per-

formance as the knife tip speed increases.

A significant temperature rise is produced in the leakage flow passing through

a high speed labyrinth seal with open-cell honeycomb lands. Table 16 lists the
increase in leakage air temperature observed under dynamic test conditions with

the straight seals in the 3-0 rig. The solid-smooth land tests provide a base-
line temperature rise resulting from windage off of the front face of the test
rotor. The work required to swirl the flow between the rotor and a solid-

smooth land is equivalent to a temperature rise of only a degree or two in the
leakage flowrates at a P u/P - 2.0. Consequently. the additional windage

at a honeycomb land in the labyrinth seal results in a temperature rise in the
leakage of as much as 206F at PR a 2.0. The temperature rise is a function

of seal clearance and honeycomb size in addition to knife tip speed.

The results of the four-knife stepped seal tests corroborated the behavior

observed in the NASA program for the replacement of a solid-smooth land with a

honeycomb land using 0.062 in. cell size. When 0.062 in. open-cell honeycomb
lands replaced solid-smooth lands In vertical or slanted four-knife stepped

* seals. the leakage increased from acout 15% at static conditions to about 20%
at a knife tip speed of 523 ft/sec. Figure 38 shows the performance
comparisons between the stepped seals which were tested with solid-smooth
lands and honeycomb lands. The apparent data inconsistency between the

.] , honeycomb land and solid-smooth land in the slanted knife stepped seal
"oriented for LTSO flow direction is explained by the inability of the knife

4b tips to reach the honeycomb land inserts at Ko a SO'. Therefore, the knives
were running with a solid-smooth land in both tests.
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Table 16.
Effects of honeycomb on temperature rise through

a 5-knife straight seal at PR - 2.0.

4T. temperature rise through seal
Land with rotation, OF

Ke CL H/C type V=261 V = 523 V = 785
degi in. X. in. ft/sec ft/sec ft/sec

90 0.005 Solid 15.9 23.7 47.4
90 0.005 0.031 16.4 31.3 57.8
90 0.005 0.062 10.5 30.4 61.6
90 0.005 0.125 4.7 16.8 45.1

90 0.010 Solid 6.7 16.1 42.8

"90 0.010 0.031 9.0 22.4 53.2
90 0.010 0.062 7.1 21.1 52.5
90 0.010 0.125 5.2 15.5 40.5

90 0.020 Solid 0.9 7.7 24.5
90 0.020 0.031 2.1 9.5 25.5
90 0.020 0,062 2.4 11.2 31.7
90 0.020 0.125 3.3 11.2 31.2

70 0.005 Solid 11.3 24.9 46.6
70 0.005 0.031 15.2 27.3 55.7
70 0.005 0.062 12.6 32.3 66.2

70 0.010 Solid 8.0 19.9 40.4
70 0.010 0.031 7.5 19.8 51.5
70 0.010 0.062 7.7 20.3 50.8

70 0.020 Solid 1.9 10.0 28.0
70 0.020 0.031 2.7 10.2 31.8
70 0.020 0.062 3.6 12.0 31.3

50 0.005 Solid 11.8 25.8 44.4
50 0.005 0.031 8.2 30.7 55.4
50 0.005 0.062 10.9 30.0 61.6

50 0.010 So1id 7.3 19.3 40.1

50 0.010 0.031 6.S 22.3 52.0
50 0.010 0.062 6.8 19.9 SO.7

50 0.020 Solid 2.2 10.3 28.9
50 0.020 0.031 2.7 10.8 38.3
50 0.020 0.062 2.8 11.5 33.0
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Figure 38. Effect of open-cell honeycomb lands on the performance
of four-knife stepped seals.
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figure 38. Effect of open-ceil honeycomnb lands on the performance
of four-knife stepped seals.
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The decreased leakage of the LTSO seal with K6 - 500 slanted knives and the

*• honeycomb land is attributed to the wall roughness effect on the cavity flow
between knives. This observation leads to the assumption that the increased

leakage incurred by the use of the 0.062 in. open-cell honeycomb lands in

stepped seals is due to the porosity effects at the knife-tips. Consequently.

it may be that porosity effects dominatp the flow at the knife tips while the

roughness effects accrue to the overall gas path length in both straight seals

and stepped seals.

The following conclusions can be derived concerning the design of straight

seals with honeycomb lands:

o Honeycomb lands may be employed effectively for abradability and for

leakage control in straight seals. However. cell size is an important

* parameter for abradability and for aerodynamic effectiveness, which is a

function of operating tip clearance. A large size honeycomb, e.g.. 0.125

in.. should be used only where tip clearance will be approximately 0.020

in. or more. Cell size should be kept to the minimum acceptable for

abradability since that will minimize the seusitivity of performance to

tip clearance.

o Slanted knives are only advantageous at smll operating clearances (near

0.005 in.) when used in conquiction with a more open cell size (0.062 in.)

honeycomb. -However, if abradability will permit the ute of smaller cell

size honeycomb (0-031 in. or less) slanting knives will not cause a

performance penalty. Design simplicity would still require the general

use of vertical knives in straight seals with honeycomb lands because

slanted knives are most beneficial at clearances greater than 0.010 in.

Do not use open-cell honeycomb lands in stepped seals. Stepped seals excel at
large clearances where abradability should not be a major design requirement.

If abradability requirements necessitate honeycomb lands, design vertical

knife straight seals with the largest permissible cell size for acceptable

leakage performance.
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6.3 INTERNAL FLOW STRUCTURE

Fourteen seal-like configurations were subjected to a full Navier-Stokes flow

analysis during the process of developing the Analysis Model code (66). Sup-

porting tests to obtain leakage performance, qualitative flow field structure,

and quantitative data for local flow field parameters were required to assist

the analytical modeling and to evaluate the predictions of the Analysis Model.

Large-scale models of these straight and stepped seals were required for de-

finitive flow visualization and flow field measurements. Seven of the seal

configurations studied with the Analysis Model were fabricated and tested in

the 2-D rig, Figures 39 and 40. Leakage performance, local flow field pres-

sure and temperature, and local velocity distributions were measured in these

seals.

A modified schlieren technique was developed for the visualization of the sub-

sonic flow structure in the large-scale seal models. The technique is dynamic

in nature and relies primarily on the motion of the flow for structural defi-

nition. The flow fields for the seven reference seal configurations were re-

corded on video tape for qualitative comparison with the carry-over and re-

circulation structure calculated by the Analysis Model. In addition, sixteen

"flow visualization tests were made to determine the way in which relative knife

edge sharpness (KR/CL) and interknife cavity aspect ratio (KP/KH) influence the

* structure of the flow field in vertica' knife straight seals.

6.3.1 Large-Scale Seal Performance

Performance tests, which were separate from the flow visualization tests, were

conducted on the nine configurations of the large-scale seal models defined in
JTable 17. Tn addition to providing leakage characteristics for the overall

performance comparisons in Ref (66). these 2-0 rig models were instrumented

""for int-rval temperature and static pressure measurements, which will be dis-

cussed laLer. The straight seals were designed on a scale ten times (lOX) the

size of the nominal full-scale seals. The stepped seals were limited to five

-times (5X) the nominal full-scale dimensions by the test section height of the
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2-D rig. The leakage performance from the testing of the large-scale seals

was not incorporated into the Design Model data base because. of the Reynolds

number influence. The measured performance for the large-scale labyrinth

seals, Table 17, are collected in Appendix B, section 8.1.2.

6.3.2 Flow Visualization

The complex flow structure within the large-scale labyrinth seals was

*" visualized by means of a schlieren system because it is the only system

presently suitable for the observation of high-frequency, unsteady flow. The

2-0 rig lends itself to the use of a Freon doping technique to generate the

required density gradients. Single and multi-location seeding points were

used to observe the diverse flow field phenomena. The single pass schlieren

system is shown schematically in Figure 41. The imaging was done over a

horizontal knife-edge so that the flow field displays ap/ay characteristics.

The airflow through the labyrinth seals was induced at low pressure ratios to

extend the viewing lengths by minimizing the mixing rates with the Freon.

"Pressure drop across the seals was varied between 0.01 in. H20 and 10 in.

H20. Testing over this range of pressure ratios confirmed the maintenance

of flow field similarity. The only differences in the flow patterns occurred

in the size and rotational speeds of the vortices and the angle of the

expansion fan trailing the knife tip. This qualitative flow field information

assists in the understanding of local velocity and turbulence interaction and

provides substantiation for the flow patterns predicted by the Analysis Model.

6.3.2.1 Analysis Model Referene Seals

Seven of the fourteen reference labyrinth seal flow fields which were analyzed

by the full Navier-Stokes code were visualized with the schlieren system and

recorded on video tape. Table 18 defines the geometric parameters for the

nine tests which comprised this effort. In Figures 42 through 48, frames

representative of these recordings are presented in photographs of each of the

seal configurations tested.
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Although individual frames of the flow visualization video are not dramatically

informative, flow-field characteristics associated with local velocities,

separation, and stability can be readily seen from the fluid motion observed

in the videotape replay on a television monitor. For example, the recording

of flow over the single-knife of a straight seal, Fio.re 42 clearly shows the

vortices upstream and downstream of the kniK, as well as the acceleration and

separation of the flow in the clearance gapand the diffusion angle of the

discharging jet. In contrast, the flow across the knife with the rounded tip,

Figure 43, shows no separation of the flow into the gap and diminished regions

of vorticity both upstream and downstream from the knife. It can be seen that

the presence of a backward facing step upstream from a knife creates a

circuitous approach to the clearance gap which enhances the separation over

the knife tip, Figure 44. The slanting of such a knife creates a re-entrant

flow situation with a large well-defined vortex ahead of the knife, as visible

in Figure 45, and a severe separation over the knife tip. When multiple

knives are used in series, the downstream vortices are confined in the cavity

much closer to the knife than wou,• occur in the free-expansion behind a

single knife. Figure 46 shows hat the carry-over from upstream knives in a

straight seal influences the discharra coefficients of the downstream knives

by imposing a significant ý,elocity of approach, which results from the small

diffusion angle of the jets. The rotation of the second cavity vortex at

about twice the angulat velhcity of the vortex in the first cavity was an

interesting observation from the video taped records. The flow-field

configuration in stepped seals of STLL design is much different from that of

LTSD design. A comparison of Figure 47 with Figure 48 shows that both stepped

seal types experience some carry-over. However, thp STLO design demonstrates

more flow blockage between knives and better vortex definition in the cavity

and ahead of the knife than that which exists in the LTSO flow. These

observations tend to reinforce the relative leakages measured during the

performance tests on these labyrinth seals.

The Lapered knife stepped seal was observeu in both the LTSD and STLD

configurations, Figures 49 and 50, respecti%.31y. The conventional tapered

knives had minimal effect relative to the flow patterns observed in the
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similar seals with rectangular knives. For flow in the direction of small
diameter to large diameter (STLD), the seal exhibits a pair of counter-rotating
vortices between knives. For flow in the direction of large diameter to small

diameter (LTSD), the seal maintains three vortices between knives with a
nebulous transitory region in the wake of the upstream knife.

6.3.2.2 Straight Seal Parameter Effects

Another flow visualization study, Table 19, was made to investigate the

effects of knife edge sharpness (KR/CL) and interknife cavity aspect ratio

(KP/KH) on the seal flow field. The observations of these sixteen tests were
recorded on video tape and used to rationalize the results of the performance

testing on the full-scale labyrinth seal models.

Table 19.
* Flow visualization tests for straight seal parameter effects.

Objective: Observation of flow field change with variable KR, KP/KH and seal
clearance in lOX-scale straight seals

Ke K KN 3 I.I0 _.EL C.L justification

1 90 0.100 3 1.10 1.10 0.050 round tip, CL
2 90 0.100 3 1.10 1.10 0.100 round tip, CL
3 90 0.100 3 1.10 1.10 0.200 round tip, CL

*4 90 0.100 3 1.10 0.55 0.100 round tip, KP/KH
5 90 0.100 3 1.10 1.10 0.050 CL
6 90 0.100 3 1.10 1.10 0.100 hot-wire baseline
7 90 0.100 3 1.10 1.10 0.200 CL
8 90 0.100 3 1.10 0.55 0.050 KP/KH. CL
9 90 0.100 3 1.10 0.55 0.100 KP/KH, CL

10 90 0.100 3 1.10 0.55 0.200 KP/KH, CL
11 90 0.100 3 0.275 1.10 0.050 KP/KH, CL
12 90 0.100 3 0.275 1.10 0.100 KP/KH, CL13 90 0.100 3 0.275 1.10 0.200 KP/KH, CL

14 90 0.100 3 0.275 0.55 0.050 KP/KH, CL
15 90 0.100 3 0.275 0.55 0.100 KP/KH, CL
16 90 0.100 3 0.275 0.55 0.200 KP/KH, CL

* 115

ft If



With the straight seal design, changing the clearance from 0.050 in. to 0.200

in. did not significantly change the observed flow patterns. The worn edged

knives caused a slightly larger expansion fan than the sharp edged knives as

the flow passed into the cavity between knives. Increasing the clearance

decreased the relative effect of the knife tip radius (KR) based on the

leakage flow passing through the clearance gap (CL). The most noticeable

difference in flow patterns was observed upon changing the knife spacing (KP)

relative to the knife height (KH). For KP/KH = 1.0, there is a single vortex

between the knives. With KP/KH = 0.5, Figure 51, there is a double vortex

between knives with the bottom vortex forming and disintegrating. With KP/KH

A = 2.0, Figure 52, the cavity vortex is moved downstream to the front face of

the trailing knife. The backwash behind the upstream knife is nebulous and

transitory.

6.3.3 Internal Pressures and Temperatures

Measurements of static pressure and total temperature were made at selected

points of the intraseal flow fields of the large-scale, 2-0 rig models during

the performance testing. The static pressure measurements were compared with

the analytical equation derived by Kearton and Keh (31):

Pn (11 n()2 1 2_ - [ 6.1P0  \r -KN r)
.K

where r > r*

* The total temperature measurements were evaluated against the adiabatic

throttling model for seal leakage. The flow factor based on the average

static pressure in the knife gap was used to calculate an effective Mach

number at each knife clearance. The implied total pressure of this flow in

conjunction with the measured static pressure in the downstream cavity yields

an estimate for the Mach number of the carry-over. The area of the carry-over

jet at the cavity static pressure taps then provides a diffusion angle for the

efflux from the knife gap.
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Figure 51. Vortex formation between vertical knives in a

straight seal with KP/KH = 0.5.
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The typical measured pressure gradient for a straight seal is shown in Figure

53. This test was with the lOX size straight seal of three knives with a.

solid-smooth land. The slope increase with increasing pressure ratio is

characteristic of rough lands also. A comparison with the approximate

analytical equation for labyrinth seal pressure gradient derived by Kearton

and Keh (Eq. 6.1) shows good agreement with the exception of the first knife

which seems to provide a larger than anticipated pressure drop.

The local Mach numbers in the straight seal carry-over, as indicated by the

static pressure measurements, are shown in Figure 54. As the overall pressure

"ratio across the seal increases, the acceleration to the last knife becomes

more pronounced until choking occurs. The jet from the last knife appears to

"behave in the same way as the discharge from an annular, convergent nozzle

with a large central base.

The total temperature measurements, as typified by Figure 55, had an

unexpected characteristic apparently generated in the cavity vortices. The

thermodynamic model for labyrinth seal leakage is the adiabatic throttling

process. For a nearly ideal gas (air in this case), the total temperature of

the system remains constant. This does not obviate the possibility of local

A variations in stagnation temperature which might be generated by the cavity

Svortices. For whatever reason, total temperature stratification occurred

within the seal. The temperature in the carry-over increased as the

temperature in the cavity decreased. The effect was most pronounced in the

cavity behind the first knife and was intensified by increasing overall

pressure ratio to approximately 2. At larger pressure ratios, no further

reductions in seal cavity temperatures were observed. The phenomena were

universal between smooth and rough lands and were repeatable for different

j ,model builds.

The typical measured pressure gradient for a stepped seal of LTSD design is

shown in Figure 56 and of STLO design is shown in Figure 57. The superior

throttling dynamics of the STLD design are indicated by the more uniform
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pressure gradient to the last knife. The good correlation of the measured

STLD seal pressures with the pressures predicted by the Kearton and Keh equa-

tion highlights the excellent carry-over control*.

The local Mach numbers in the stepped seal carry-over, as calculated from the

static pressures, are plotted in Figure 58 for the LTSO design and in Figure
*• 59 for the STLD design. The reduced STLD carry-over is indicated by the

slightly lower Mach numbers at equivalent seal pressure ratios. Comparison
with the Mach numbers of the straight seal at the same pressure ratio, Figure
54, shows that the higher leakage for the straight seal is reflected in the

higher carry-over Mach number relative to both LTS1 and STLD stepped seals.

Typical total temperature characteristics for the LTSO and the SILO stepped

seals are illustrated by Figures 60 and 61, respectively. The temperature

stratification phenomenon is Identifiable in both types of stepped seals.
However, the temperature distributions are observed to be different based on

the measurements made in the instrumented large-scale stepped seals. The LTSO

design exhibits a temperature rise at the land similar to that observed in the

straight seal. However, no temperature depression was found in the between
knife cavities, as was the case with the straight seal. This may be due tW

the serpentine "wash-through* flow characteristic seen in the cavities between

LTSD knives which prevents the establishment of large, well defined cavity

vortexes like those observed in the straight seals and the STLC stepped seals.

However, small rotational flow fields. which form at the corners of the forward
facing steps downstream of the knives and in the bottom half of the interknife
cavities, must operate to produce the elevated Stagnation temperatures observed

at the stator land. Total temperature drops similar to but smaller than those

occurring in the straight seal cavities were seen in the cavities of the STLD
stepped seal. However, a combination of temperature drop followed by tempera-
ture rise occurred at the stator thermocouples in the STLO design. A satis-

factory physical explanation of the total temg)erature measurements made in both

straight and stepped seals may depend upon a more detailed Wavier-Stokes
analysis.

4, *The Kearton and Keh derivation assumes no carry-over between seal knives.
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Static pressure measurements similar to those made in the 2-D rig on the large-

scale hardware were made at the stator walls of a full-scale straight seal that
was tested in the 3-D dynamic rig. Only the cavity pressures were measured and
compared to the Kearton and Keh model for these seals. Solid-smooth and rough

* _land hardware were used for these tests. No intraseal temperature measurements

were made with the full-scale geometry. Static pressure measurements were made

along the lands of a typical four-knife straight seal at the midline of the
cavities to investigate carry-over perturbations caused by stator surface

* . roughness and by rotation. The pressure gradient through the static 3-D seal

exhibits the same characteristic as it did in the large-scale 2-D seal, Fig-
ures 62 and 63. An unexpectedly large part of the overall pressure drop oc-

curs across the first knife. This characteristic is moderated by rotational

"effects and to a lesser extent by surface roughness.

6.3.4 Internal Velocity Profiles

The velocity profiles within the flow fields of two baseline seal configura-

tions were measured for Analysis Model validation. The conventional configur-

ations of a straight seal and a stepped seal in the STLD flow direction were
selected as the baselines for experimental data comparison with the full

* Navier-Stokes calculations from the Analysis Model (66). Figure 64 is a

schematic representation of the baseline three-knife straight seal with the
*• velocity measurement stations identified by alphabetic sentinels. Figure 65

is a similar schematic for the baseline three-knife stepped seal. These seals
were large-scale models from the set that was tested with the schlieren system

in the 2-D rig. The availability of the flow visualization results assisted

the evaluation and interpretation of the velocity measurements.

Two techniques were employed for the measurement of the velocity profiles at

the designated seal stations. A Laser Doppler Velocimeter (LDV) system was
selected initially, but the small size of the seal model with respect to the
sampling volume of the instrumentation forced the LDV testing to be

abandoned. A hot-wire anemometer system (HWA) was substituted successfully
for the LDV. The experimental procedures and data are discussed, but the

comparisons with the Analysis Model calculations are presented in Ref. (66).
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6.3.4.1 Laser Doppler Velocimetry

The LDV technique was the instrument of choice for measuring the velocity dis-

* tribution in the 2-D labyrinth seal rig models. LDV is an optical technique

which does not disturb the flow and permits unambiguous determination of the

flow direction. The LDV concept proposed by M. 3. Rudd was utilized as shown

in Figure 66. The Allison system consisted of a 4 watt Argon-ion laser for

the coherent light source, a beam splitter, appropriate optics, and a photo-

detector to observe the frequency shift in the scattered light, which is due

to the velocity of the target. The system was operated in the forward

scattering mode with the laser output in the single green line. It was

necessary to seed the flow with fine (1 pm average, 3 pm maximum diameter)

dioctyl phthalate (DOP) oil mist to obtain sufficient reflective particulate

for a measurable signal. Theoretical calculations verified that the DOP

particles followed the airflow with negligible slip. A TSI processor analyzed

the LDV signal.

The difficulties with the LDV system were two-fold:

1) The design and dimensions of the 2-0 rig were inappropriate for the
measurements being attempted.

* 2) The single-component LDV system was inadequate for measuring two-component

velocities in the interknife cavities.

The width of the 2-0 rig (6.28 in.) and the small clearance gaps (0.100 in.)

* of the seal models limited the laser beams to a narrow crossing angle. The
resultant probe volume was on the order of 10% of the clearance gap with an

aspect ratio of about 10. This relatively large probe volume tended to smear

the velocity gradient toward the average velocity, especially in the neighbor-

hood of the boundary layers. Although good correlation was obtained between

the mass flowrate integrated from the velocity profile and the mass flowrate

measured by a downstream orifice plate, the velocity gradients were much

smaller than those predicted by the Analysis Model.
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Sequential, orthogonal (at 450 and 135* to the flow in the knife gap)

measurements in the interknife cavities were required of the single-component

LDV system. The vortex instability made the sequential measurements for

resultant velocity uncertain.

*" As a consequence of these experimental difficulties with the small seal model
and the two-axis velocity measurements, the LDV system was abandoned in favor

of hot-wire anemometer testing.

6.3.4.2 Hot-Wire Anemometry

In conjunction with the visualization of the global flow fields of the

baseline seal configuration by schlieren imaging, a HWA system has

sufficiently high response and accuracy to measure local velocities and

turbulence intensities,

2

Np

Np

where U instantaneous velocity

*' U average velocity

* b N number of data samples
p

Since the flow visualization studies had indicated a quasi-steady, two-dimen-

sional streamline pattern within the cavities and vortex patterns which were

statistically repeatable, the HWA system can measure the local velocities in

the regions of swirling, separated, or stagnated flow. The flow through the

clearance gaps and in the carry-over is essentially jet-like, which makes
these flows easily measured with a HWA system. The experimental arrangement

of the HWA system for flow field measurements in the large-scale baseline

seals In the 2-D rig is shown schematically in Figure 67.
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The DISA type 55M constant temperature anemometer (CTA) system was used for

single-wire hot-wire measurements in the labyrinth seal rig. The single-wire
probes used were the DISA type 55P11 straight general purpose miniature wire

probes with a wire diameter of 5 um. Calibrations of hot-wires were made

using DISA calibration equipment for atmospheric pressure calibration.

Subatmcspheric calibrations were made using a callbrator that attached to a

steam ejector which provided conditions from 12 psia to 4 psia static oressure

at the hot-wire. A calibration curve was obtained for the hot-wire output

voltage versus the flow velocity at conditions of constant temperature and

static pressure.

The linearizer shown in the Figure 67 schematic is used to linearize the raw

anemometer output voltage. The linearizer must be set up for each calibration

curve over the desired measurement range. The linearized voltage and the RMS

voltage are used to calculate the turbulence intensity as follows:

T (vRNs/vudc) 100% 6.3

The raw hot-wire velocity data must be corrected for density differences

between the calibration conditions and the run conditions. The response of a

constant-temperature hot-wire anemometer is sensitive to the product of pU

for static pressures near ambient (14.5 psia ± 4 psi). For these cases, the

indicated velocity is simply corrected by a density ratio:

UE UEASUREO x p osh..• MASRO Pmeasurement cond.

A temperature difference between calibration and run conditions requires a
further hot-wire data correction, besides the temperature dependence of the

density in equation 6.4.

The paper by Bearman (1971) presents a correction for ambient temperature

drift to be applied to the indicated velocity. A complete correction equation

to apply to hot-wire anemometer data for P. 14.5 psia + 4 psi is:
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Ucorr = + OO834 (TmeasTcal ) s[Ps cal/Tcal )/(ps meas/Tmeas)] Umeas 6.5

where T is in Rankine degrees

For static pressures outside the range above, the measured velocity is
determined by interpolation directly from the calibration curves, and then the
multiplicative temperature correction, [(l + .00834 (TTmeas-T Tcal), is

applied.

Hot-wire velocity measurements were also made at the seven measurement
locations along the rig centerline shown in Figures 64 and 65. These

measurements were made by inserting the hot-wire through a side plate and
using a sliding clamp positioner. Flow direction was determined by minimizing

the output of a single-wire hot-wire. The minimum output is reached when the
hot-wire is aligned with the flow direction. A protractor attached to the
hot-wire sheath gave the flow direction to an overall accuracy of +5 deg.

Initial hot-wire anemometry work above the knives was performed by extending
the hot-wire through a 0.161 in. diameter hole above the first and third
knives of the straight seal. This hole was large relative to the knife tip

thickness, KT = 0.100 in. The velocity profile measured above the first knife

with this setup was always peaked near the knife tip. The analytical
solution, on the other hand, yielded a velocity profile above the first knife
that was peaked near -Lhe land and deficient near the knife tip. This velocity
"profile discrepancy between the analytical and experimental results above the

- first knife can be explained by the local diffusion into the access hole. A

-- local reduction in the flow velocity near the land was measured by the

* hot-wire anemometer due to the large access hole The HWA probe tended to

plug the hole as the hot-wire approached the knife tip which reduced the
measurement error. ,owever, agreement between the experimental and analytical
results was obtained for the velocity profile above the third knife. The

*.- higher Mach number (.0.7) decreased the effect of the hole.

140

* * .*.** * *.4,* * , . * ~ ** .. .



J4
The rig hot-wire access was improved by making slotted holes to allow just the

two prongs supporting the hot-wire to enter the flow field for measurements

near the land. A sketch of the hot-wire access provided above the first knife

is shown in Figure 68. The hot-wire was located using a precisely machined

holder that was shimmed up until the sensing element was flush with the upper

land. By removing shims the hot-wire was accurately extended into the flow

field near the upper land.

The experience with the effect of the HWA access holes on the measurement of

-' I! the labyrinth seal flow in the clearance gaps demonstrates a primary

experimental difficulty with invasive instrumentation. The instrumentation
distorts the parameters to be measured. Consequently hardware scale relative

to all invasive components of the measuring instrument must minimize the

relative disturbance to the investigated phenomena.

Discounting the perturbations of the flow field by the HWA probing system the

velocity measurements had an experimental uncertainty of about ±3% based on

instrument calibration, data interpolation, and unsteadiness.

The flow field velocities were measured at the selected locations within thi

stepped seal at a pressure ratio (Pu/Po) of 2. The velocity measurements

along the centerlines of the cloarance gaps are given relative to the vertical

distance above the knife tips in Tables 20 and 21 for the three-knife straight

a.seal and in Table 22 for the three-knife stepped seal.

The geometry of the slots precludes the effective measurement of any small
transverse velocities. Therefore, the HWA measurements in the clearance gaps

consist only of streamwise velocities. The velocity measurements which were

"made itear the faces of the knives and in the interknife cavities of the

three-knife straight seal included streamwise and transverse components. The
resultants of these velocities are tabulated in Table 23 for HWA measurements

relative to the root of the interknife cavities. Neasurements were not made

along the station planes in the interknife cavities of the three-knife stepped

seal.
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Table 20.
Three-knife straight (lOX) labyrinth seal model

hot-wire anemometer data above the first knife at PR 2.0.

Station B
.4

Velocity profile above the first knife, Pstatic = 11.02 psia
Test 1:

U TI
y, position streamwlse turbulence

in. above knife tip velocity., m/s intensity. %

0.100 198 2.13
0.098 198 1.99
0.095 198 2.19
0.090 200 3.61
0.080 200 4.37
0.070 198 4.24
0.060 198 4.67
0.050 197 4.99
0.040 196 5.75
0.030 193 6.78
0.020 180 15.0
0.010 142 20.0
0.008 145 19.9
0.005 105 28.8

Worifice - 0.154 lbm/sec

Wveloctty profile - 0.157 lbr/sec (2.2% high)

Velocity profile above the first knife. Pstatic " 10.90 psia
Test 2:

.•U TI

"y, position streamwise turbulence
In. above knife tip velocity, mr/s intensity. %

0.100 197 4.73
, 0.097 206 2.80

0.095 206 2.91
0.090 206 3.50
0.080 205 3.68
0.070 203 3.56
0.060 202 4.01
0.050 201 3.88
0.040 198 4.84
0.030 188 7.68

* 0.020 172 14.6

Worifice - 0.154 ibm/sec
Wvelocity profile - 0.156 ibm/sec (1.7% high)
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Table 21.
Three-knife straight (lOX) labyrinth seal model

hot-wire anemometer data above the third knife at PR- 2.0.

Station I

Velocity profile over the third knife, Pstatic = 7.25 psia

U
y, position streamwli se

in. above knife tip velocity, m/s

0.100 no measurement
0.090 285
0.080 278
0.070 270
0.060 262
0.050 255
0.040 249
0.030 243
0.020 241

S0.010 226
0.005 195

Worifice - 0.141 ibm/sec
wvelocity profile - 0.157 ibm/sec (11.5% high)

Table 22.
Three-knife STLD stepped M) labyrinth seal model

hot-wire anemometer data at P. -2.0.

Station 8

S..Velocity profile above the first knife. Pstatic - 12.96 psia
Ttotal - 70.OF

U TI
y, position streamwise turbulence

in. above knife tiio velocity, m/s intensity,.

0.100 124 1.4
0.095 125 2.7
0.090 125 3.2
0.080 126 4.6
0.070 126 5.4
0.060 126 6.1
0.050 126 6.3
0.040 126 7.4
0.030 123 11.4
0.020 55 22
0.010 24 21
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Table 22 (Can't)

Station F

Velocity profile above the second knife. Pstatlc = 10.51 psia
Ttotal = 71.5*F

U
y, position streamwi se

in. above knife tiD velocity. m/s

0.100 163
0.095 171
0.090 173
0. 080 178
0.070 181
0.060 181
0.050 180
0.040 165
0.030 130

* 0.020 59
0.010 40

Station I

Velocity profile above the third knife. Pstatic - 7.85 psia
Ttotal - 7l.5*F

U
y, position streamwise

in. above knife tio velocity, m/s

0.100 no measurement
0.095 191
0.090 185
0.080 177
0.070 170
0.060 160

'0.050 147
0.040 136
0.030 125
0.020 108
0:010 62
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"Table 23.

Velocity components in the cavity regions for the three-knife
straight seal at PU/PD = 2.0.

STATION A STATION C STATION D STATION E
y Urn em Urn em Urn 0M Urn em

S1.1 49.8 28 30.4 341 74.5 0 107.5 359
1.0 42.7 39 43.1 52 50.0 14 44.3 351.3 0.9 33.4 50 47.9 75 30.0 4 36.7 314
0.8 26.3 56 52.5 95 20.0 14 43.1 267
0.7 19.1 55 56.3 99 17.0 90 48.8 254
0.6 13.8 47 60.9 103 17.6 90 49.6 253
0.5 10.2 25 55.1 110 20.0 128 54.5 248
0.4 34.6 160
0.3 51.5 170
0.2 52.8 167
0.1 54.9 161

"STATION G STATION H STATION J
_2M_ Oflj Urn Om Urn 6

1.1 30.8 52 125.1 352 40.5 306
- 1.0 51.4 64 53.8 347 25.3 295

0.9 59.6 80 37.8 317 24.7 321
0.8 66.2 98 46.6 280 23.4 15
0.7 69.6 98 53.1 257 23.4 16

, 0.6 62.0 100 59.9 256 21.8 22
"0.5 47.6 95 63.1 252 20.0 22

"4,

L~ecend

y (in.) - Distance from rotor
um(m/sec) - Measured speed
,em (deg) - Measured angle
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The velocities measured in the straight and stepped baseline seals are compared

to the calculated flow fields in Ref. (66) as a method for evaluating the com-

putational accuracy of the Navier-Stokes solution employed in the Analysis

Model. Basically the velocities measured in the clearance gaps of the three-

knife straight seal were about 20% higher than those calculated. The measured

velocity profiles had thinner boundary layers on both the knife tip and land
than the Analysis Model results. However, the measured and predicted flow

fields are qualitatively similar, especially in the cavity regions. The

straight seal comparison reversed for the baseline STLD stepped seal. The

measured boundary layer or separation on the knife tips was thicker than that

predicted by the Analysis Model. The lack of a discernible boundary layer on

-V-. the lands of either the straight seal or stepped seal models is attributed to

the flow perturbation introduced by the hot-wire access slots in the lands.

Qualitatively and quantitatively the comparison of the measured flow fields

with the calculated flow fields was better in the stepped seal than in the

straight seal.

Some of the discrepancies between experimental and analytical velocity data

* . might be caused by the differences between the inlet velocity profiles assumed

for the calculations and the inlet velocity profiles measured for the straight
,,
* seal, Figure 69, and the stepped seal, Figure 70. The initial boundary layer

thicknesses imposed upon the Analysis Model solutions were significantly

greater than those measured at the *starting" upstream station. The carefully
constructed lemniscate inlet of the 2-0 rig minimized the boundary layer effect

.4

on the flow approaching the seal models. Also, the calculations did not cor-

rect for end wall losses present in the 2-0 rig. There are several obvious

improvements which could be made to the experimental procedures, e.g., in-

creased model scale, non-invasive velocity measuring system, and careful sim-

ulation of far upstream and far downstream channel geometry. The Analysis

Model could be modified to more accurately represent the test conditions, e.g.,

exact input of the measured inlet velocity profile, corrections for end wall
effects, and fine tuiting of the wall friction and turbulence modeling. How-

ever. as an initial attempt at numerical solutions of the full Navier-Stokes
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equations for the compressible flow through conventional labyrinth seals of

straight and stepped configurations, the results of the Labyrinth Seal

* Analysis program have been very encouraging.
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LIST OF SYMBOLS

SYMBOL DEFINITION UNITS

a Constant

A Cross-sectional area in. 2

At Flow area between the seal knives and land, seal throat in. 2

b Thickness of land material inserts in.
i ~BtuR

Cp Specific heat at constant pressure bt
m

Co Discharge coefficient, C D-w/w.d
CL Clearance between seal knives and land in.

DTC Distance-to-contact: axial clearance between knife and in.
land, undefined for constant height straight-through seals

f ( ) Function of the variables ( )
f Fanning friction factor

gc Standard gravitational acceleration mass conversion factor lbmft/lbbse
H Height of the seal in.

4A
H Hydraulic diameter, H - iA in.

KP
Kc Contraction coefficient

Ke Expansion coefficient

* Kf Wall friction loss coefficient

KH Knife height In.

*' KN Number of knives
KP Knife pitch in.

KR Knife tip radius in.
KT Knife tip thickness in.

"Kvf Venturi-friction coefficient
Ka Knife taper angle deg. "

KO Knife slant angle deg, 6

It Length of gas path in.
SLn Natural or Naperian logarithm

L Length of the seal in.
LTSD Leakage flow direction from the large-to-small seal diameter

i5 157



SYMBOL DEFINITION UNITS

M Mach number

in Specific seal knife number

p Land material porosity, ratio of effective open area to

total area

P Wetted perimeter of duct in.

Ps Local static pressure psia

P Seal plenum downstream pressure psia
D

Pn Static pressure downstream of seal knife n psia

mPR Seal pressure ratio, Pu/P

P Local total pressure psia

P Seal plenum upstream pressure psiaU
r P /P

r* PD/PU where P0 is the maximum downstream pressure to

maintain choked leakage flow through the seal

rk Rotor radius at the knife tips in.

rt Radius of the edge break on knife tips in.

R Gas constant lbf tR

Re Streamwise Reynolds number, P-0
,xI~rK2

ReN Rotational Reynolds number,

SH Step height in.

STLD Leakage flow direction from the small-to-large seal diameter

t Local static temperature O
T Local total temperature OF

Ta Taylor number. Ta - pV(CL) i

Tu Seal upstream plenum temperature OR

u Absolute (resultant) flow velocity at angle 0 r/sec

U Streamwise velocity r/sec

v Voltage volts

V Seal knife tip speed ft/sec
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SYMBOL DEFINITION UNITS

* w Seal airflow rate lbm/sec

Wid Ideal or isentropic airflow rate lbm/sec

_ x Multiplication operator
X Honeycomb cell size in.

XMUL Area correction factor for clearance 3bove a knife which

is downstream of a step

Sy Vertical axis or transverse flow direction

z Horizontal axis or streanmise flow direction

. Z Compressibility factor relative to a thermally perfect gas

jc jet expansion angle deg,

y Ratio of specific heats

r Velocity carry-over factor

a jet expansion height in.
Land surface roughness v in.

lb
- Fluid dynamic viscosity ft

ftsec
w Conventional transcendental number, ratio of circular

circumference to diameter

lb
P Density -- M'

ft
3

2lb
* -P irf low parameter lbUt sec

Rotational speed, angular velocity se_
•sec
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APPENDIX 8

SUPPORTING DATA FOR MODEL DEVELOPMENT
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B.1 2-0 RIG DATA

The following static data were acquired in the 2-0 labyrinth seal test rig

l with a pressurized inlet plenum and an atmospheric exhaust. The inlet air

temperatures were those of the ambient air.

B.l.1 Full-Scile Seals

The full-scale seal dimensions are typical of mealum to large gas turbine

engines. These test results formed a part of the data bank for the Design

Model development.
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B.I.2 Large-Scale Seals

The large-scale seals were geometrically similar to full-scale seal
.1

configurations but were enlarged to the maximum model size acceptable to the

2-0 rig:

Straight seals: 10 times full-scale

Stepped seals: 5 times full-scale

The performance data and interknife cavity pressure and temperature

measurements were used to verify the accuracy of the Analysis Model

predictions.
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B.2 3-D RIG DATA

The static and dynamic performance data acquired from the 3-0 rig tests on
full-scale seals:

o Supported the Design Model development with data base performance and

interknife cavity pressures.

* o Validated the Design Model accuracy for a seal configuration not in the

development data base.
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The following static data were acquired in the 2-0 labyrinth seal test rig

with a pressurized inlet plenum and an atmospheric exhaust. The inlet air

temperatures were the same as the rig ambient air.

The data reduction and plotting were automated. Irregular plots of the seal

performance are the result of the plot algorithm. The test points are

connected with straight lines without regard for smoothing data scatter.
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The following static data were acquired in the 3-0 labyrinth seal test rig

with a pressurized inlet plenum and an atmospheric exhaust. The inlet air

temperatures were the same as the environmental temperature.

The data reduction and plotting were automated. Irregular plots of the seal

I. performance are the result of the plot algorithm. The test points are

connected with straight lines without regard for smoothing data scatter.
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STEPPED SEALS

CL O KH

LAND S MA1110

S~LT80 flow up the

T lend stop

(not shown)
3TLO flow direction

shown K/B

STRAIGHT SEALS

CL

KP K
4 ARID

Labyrinth Seal Nomenclature.
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